

Name \qquad Hour \qquad

Unit 3 - Chapter 2 - Reasoning and Proof

Monday September 30	2-3 Conditional Statements
Tuesday October 1	2-5 Postulates and Proof DHQ 2-3
Block Wed/Thurs. Oct $2 / 3$	2-6 Algebraic Proof UNO Proof Activity
Friday October 4	Quiz 2-3 to 2-6
Monday October 7	2-7 Segment Proof
Tuesday October 8	2-8 Angle Proof DHQ 2-7
Block Wed/Thurs. October 9/10	Proof Practice \quad DHQ 2-8
$\begin{array}{r} \text { Friday } \\ \text { October } 11 \end{array}$	No School - Teacher Work Day
$\begin{array}{r} \text { Monday } \\ \text { October } 14 \end{array}$	Proof Review
$\begin{array}{r} \text { Tuesday } \\ \text { October } 15 \end{array}$	ACT Test Tips
Wednesday October 16	ASVAB/PSAT/ACT Practice Parent Teacher Conferences 4:30-8:30
Thursday/Friday October 17-18	No School Thursday, Parent Teacher Conferences 11-8
$\begin{array}{r} \text { Monday } \\ \text { October } 21 \end{array}$	Proof Review for Test
Tuesday October 22	Proof Review for Test
Wed/Thurs October 23/24	Proof Test

	2.3 Conditional Statements
I can analyze statements in ifthen form. I can write the converse of ifthen statements	Conditional Statement- an if-then statement $(\boldsymbol{p} \rightarrow \boldsymbol{q})$ Hypothesis - is the phrase immediately following the word "if" $p \rightarrow q$
	Example 2-3-1 Circle the hypothesis and underline the conclusion in the following sentences. a. If a polygon has 6 sides, then it is a hexagon. b. Tamika will advance to the next level of play if she completes the maze in her computer game. c. If today is Thanksgiving Day, then today is Thursday. d. A number is a rational number if it is an integer.
	a) A five-sided polygon is a pentagon. b) An angle that measures 45° is an acute angle. c) An obtuse triangle has exactly one obtuse angle. d)

ALERT: A conditional with a false hypothesis is always true.

	Example 2-3-3 Determine the truth value of the conditional statement. If true, explain your reasoning. If false, give a counterexample.
Converse of a Conditional Statement.	Converse - The statement formed by \qquad the \qquad and the \qquad of a conditional statement. Example 2-3-4 Conditional Statements Write the conditional and its converse for the following true statement. Determine the truth value of each statement. If a statement is false, give a counterexample. a. Bats are animals that can fly. Statement (T / F) Converse (T / F) b. The deer population increases with the food available. Statement (T / F) Converse (T / F)

Biconditional Statements

All definitions are Biconditional Statements. Statements whose converse is also true, can be written as a biconditional.	Statements that use the phrase "if and only if" which is abbreviated "iff" Def of \cong segments: Segments are \qquad if and only if segments have the same measure. Def of \cong angles: Angles are \qquad if and only if angles have the same measure. Def of right angle: an angle is a \qquad angle iff the angle's measure is 90°. Def of segment bisector: a segment/ray bisects a segment iff the segment/ray goes through the \qquad Def of \angle bisector: a segment/ray bisects an \angle iff the segment/ray cuts the \qquad perfectly in \qquad Def of Complementary: two angles are complementary iff the sum of the angles is \qquad Def of Supplementary: two angles are supplementary iff the sum of the angles is \qquad .

	Example 2-5-2 Analyze Statements Using Postulates Determine whether the following statement is always, sometimes, or never true. Explain. A. If plane T contains $\overleftrightarrow{E F}$ and $\overleftrightarrow{E F}$ contains point G, then plane T contains point G. B. $\overleftrightarrow{G H}$ contains three noncollinear points. C. There is exactly one plane that contains points A, B, and C. D. Points E and F are contained in exactly one line. E. Two lines intersect in two distinct points M and N. F. The intersection of plane M and plane N is point A. G. If A and B lie in plane W, then $\stackrel{\rightharpoonup}{\boldsymbol{B}}$ lies in plane W. H. $\boldsymbol{T R}$ lies in plane M.
	KeyConcept The Proof Process
	Step 1 List the given information and, if possible, draw a diagram to illustrate this information. Step 2 State the theorem or conjecture to be proven. Step 3 Create a deductive argument by forming a logical chain of statements linking the given to what you are trying to prove. Step 4 Justify each statement with a reason. Reasons include definitions, algebraic properties, postulates, and theorems.

	Example 2-5-3 Write a Paragraph Proof
	A. Given $\overleftrightarrow{A C}$ intersects $\overleftrightarrow{C D}$, write a paragraph proof to show that A, C, and D determine a plane. It is given $\overleftrightarrow{A C}$ intersects $\overleftrightarrow{C D}$, so they must intersect at point C , by Postulate \qquad . So Point A is on $\overleftrightarrow{A C}$ and point D is on $\overleftrightarrow{C D}$. Points A, C, and D are \qquad \qquad . Therefore, B. Given that M is the midpoint of $\overline{X Y}$, write a paragraph proof to show that $\overline{X M} \cong$ $\overline{M Y}$. If M is the midpoint of $\overline{X Y}$, then from the definition of midpoint of a segment, we know that \qquad $=$ \qquad , This means that \qquad and \qquad have the same measure. By the definition of congruent segments, we know that if the segments have the same measure they are congruent. Therefore, \qquad \cong \qquad Once a conjecture has been proven true, it can be stated as a theorem and used in other proofs, the conjecture in example 3 is known as the midpoint theorem.
	Theorem 2.1 Midpoint Theorem
	If M is the midpoint of $\overline{A B}$, then $\overline{A M} \cong \overline{M B}$. Recall:
Transitive property is needed for this proof...keep or not?	Example 2-5-4 Apply the Midpoint Theorem In the figure below, point B is the midpoint of $\overleftrightarrow{A C}$ and point C is the midpoint of $\overleftrightarrow{B D}$. Write a paragraph proof to prove that $A B=C D$. It is given that point B is the midpoint of $\overleftrightarrow{A C}$ and point C is the midpoint of $\overleftrightarrow{B D}$. So, $A B=B C$ and $B C=B D$.

I can use algebra to write two column proofs.	Properties of Real Numbers I can use following properties are true for any real numbers a, b, and c	
properties of equality to write geometric proofs	Subtraction Property of Equality	
		Multiplication Property of Equality

Example 2-6-2 Literal Equations

If the distance d an object travels is given by $d=20 t+5$, the time t that the object travels is given by $t=\frac{d-5}{20}$. Write a two column proof to verify this conjecture.

Begin by stating what is given and what you are to prove.

Statements	Reasons
$1 . d=20 t+5$	1. Given
2.	2.
3.	3.
$4 . t=\frac{d-5}{20}$	4.

If the formula for area of a trapezoid is $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$, then what would be the formula in terms of height (h). Fill in the missing statements and reasons in the two column proof.

Statements	Reasons
1.	1.
2.	2. Multiplication Property of Equality
$3 \cdot \frac{2 A}{\left(b_{1}+b_{2}\right)}=h$	3.
4.	4. Symmetric Property of Equality

Example 2-6-3 Geometric Proof

Use a two column proof to verify each conjecture.
Given: $\angle A \cong \angle B, m \angle B=2 m \angle C, m \angle C=45$
Prove: $m \angle A=90$

Statements	Reasons
1. $\angle A \cong \angle B, m \angle B=2 m \angle C$, $m \angle C=45$	1.
2.	2. Def of \cong angles
$3 . m \angle A=2 m \angle C$	3.
4.	4. Substitution
5. $m \angle A=90$	$\mathbf{5}$.

Given: $\overline{A B} \cong \overline{C D}, \overline{C D} \cong \overline{R S}$, $A B=12$
Prove: $\mathrm{RS}=12$

Statements	Reasons
1.	1.
2.	2. Def of \cong segments
$3 . A B=R S$	3.
4.	4. Substitution
5. $R S=12$	$\mathbf{5}$.

2.7 Congruent Complements Theorem Angles complementary to the same angle or to congruent angles are congruent.

Congruent Supplements Theorem:

If $\angle 5$ and $\angle 6$ are supplementary and $\angle 7$ and $\angle 6$ are supplementary

$$
\text { then } \rightarrow
$$

If $\angle 1$ and $\angle 4$ are complementary and $\angle 1$ and $\angle 2$ are complementary

$$
\text { then } \rightarrow
$$

Linear Pair Theorem:

If two angles form a linear pair, then they are supplementary.
$\angle 1$ and $\angle 2$ form a \qquad ,

Example 2-8-4

Given: $\angle 1$ and $\angle 2$ form a linear pair.
$\angle 2$ and $\angle 3$ are supplementary.
Prove: $\angle 1 \cong \angle 3$

Statements	Reasons
a. $\angle 1$ and $\angle 2$ form a linear pair	a.
b.	b. linear pair theorem
c. $\angle 2$ and $\angle 3$ are supplementary	c. given
d.	d.

Theorem 2.8 Vertical Angles Theorem

If two angles are vertical angles, then they are congruent.
Abbreviation Vert. \& are \cong.
Example $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$

Example 2-8-5 Given: $\angle 1 \cong \angle 4$
Prove: $\angle 2 \cong \angle 3$

Statements	Reasons
1.	1.
2.	2.
3.	3.

Theorems Right Angle Theorems	
Theorem	Example
2.9 Perpendicular lines intersect to form four right angles. Example if $\overrightarrow{A C} \perp \overrightarrow{D B}$, then $\angle 1, \angle 2, \angle 3$, and $\angle 4$ are rt. $\angle s$.	$A^{\hat{f}}$
2.10 All right angles are congruent. Example If $\angle 1, \angle 2, \angle 3$, and $\angle 4$ are rt. \angle s, then $\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4 .$	
2.11 Perpendicular lines form congruent adjacent angles. Example If $\overrightarrow{A C} \perp \overrightarrow{D B}$, then $\angle 1 \cong \angle 2, \angle 2 \cong \angle 4, \angle 3 \cong \angle 4$, and $\angle 1 \cong \angle 3$.	
2.12 If two angles are congruent and supplementary, then each angle is a right angle. Example If $\angle 5 \cong \angle 6$ and $\angle 5$ is suppl. to $\angle 6$, then $\angle 5$ and $\angle 6$ are rt. \&s.	
2.13 If two congruent angles form a linear pair, then they are right angles. Example If $\angle 7$ and $\angle 8$ form a linear pair, then $\angle 7$ and $\angle 8$ are rt. $\stackrel{1}{ }$.	$\left.\longleftarrow \quad 7\right\|_{8}$

