

Name

Hour _____

	2-3 Conditional Statements
Monday September 30	2-5 Conditional Statements
Tuesday	2-5 Postulates and Proof
October 1	DHQ 2-3
Block	2-6 Algebraic Proof
Wed/Thurs.	DHQ 2-5
Oct 2/3	UNO Proof Activity
	Quiz 2-3 to 2-6
Friday	
October 4	
	27 Compart Durof
Monday	2-7 Segment Proof
October 7	
Tuesday	2-8 Angle Proof
October 8	DHQ 2-7
Block	Proof Practice
Wed/Thurs.	DHQ 2-8
October 9/10	
Friday	
October 11 No School – Teacher Work Day	
Monday	Proof Review
October 14	
Tuesday	ACT Test Tips
October 15	ACT Test Tips
Wednesday	ASVAB/PSAT/ACT Practice
October 16	Parent Teacher Conferences 4:30-8:30
Thursday/Friday	No School
October 17-18	Thursday, Parent Teacher Conferences 11-8
Nondo-	Dreaf Daview for Test
Monday October 21	Proof Review for Test
OCIODEI 21	
Tuesday	Proof Review for Test
October 22	
Wed/Thurs	Due of Toot
October 23/24	Proof Test

ALERT: A conditional with a *false* hypothesis is always *true*.

	<u>Example 2-3-3</u> Determine the truth value of the conditional statement. If <i>true</i> ,		
	explain your reasoning. If <i>false,</i> give a counterexample.		
	If last month was February, then this month is March.	When a rectangle has an obtuse angle, it is a parallelogram.	
	True/False If Mrs. McWhorter teaches geometry, then everyone has a "C" in her class.	True/False If 2+2=7, then a banana is a vegetable.	
	True/False If two angles are acute, then they are congruent. True/False	True/False If an even number greater than 2 is prime, then 5 + 4 = 8. True/False	
Converse of a Conditional Statement.	litional the enditional statement		
	b. The deer population increases with the f Statement (T / F)	ood available. Converse (T / F)	

All definitions are	All <u>definitions</u> are Statements that use the phrase "if and only if" which is abbreviated	
Biconditional	"iff"	
Statements.	<u>Def of \cong segments</u> : Segments are if and only if segments have the	
	same measure.	
Otatamanta whare	<u>Def of \cong angles</u> : Angles are if and only if angles have the same	
Statements whose	measure.	
converse is also true, can be written	<u>Def of right angle</u> : an angle is a angle iff the angle's measure is 90°.	
as a biconditional.	<u>Def of segment bisector</u> : a segment/ray bisects a segment iff the	
	segment/ray goes through the	
	<u>Def of \angle bisector</u> : a segment/ray bisects an \angle iff the segment/ray cuts the	
	perfectly in	
	<u>Def of Complementary</u> : two angles are complementary iff the sum of the	
	angles is	
	<u>Def of Supplementary</u> : two angles are supplementary iff the sum of the	
	angles is	

T as a identifi-	2.5 Postulates and Paragraph Proofs		
l can identify and use basic	Postulates Points, Lines, and Planes		
postulates	Words	Example	
out points, les, and anes.	2.1 Through any two points, there is exactly one line.	P R Line n is the only line through points P and R .	
n write agraph ofs.	2.2 Through any three noncollinear points, there is exactly one plane.	$\begin{array}{ccc} A & B & \mathcal{K} \\ \bullet & C & \\ \bullet & & \\ \bullet & & \\ \bullet & & \\ \end{array} \begin{array}{c} \text{Plane } \mathcal{K} \text{ is the only plane} \\ \text{through noncollinear points} \\ A, B, \text{ and } C. \end{array}$	
	2.3 A line contains at least two points.	P Q R Line <i>n</i> contains points <i>P</i> , <i>Q</i> , and <i>R</i> .	
	2.4 A plane contains at least three noncollinear points.	$\begin{array}{ccc} B & \mathcal{K} \\ L & \mathbf{C} \\ \bullet & E \\ \bullet & \mathbf{C} \end{array}$ Plane \mathcal{K} contains noncollinear points L, B, C , and E .	
	2.5 If two points lie in a plane, then the entire line containing those	Points A and B lie in plane \mathcal{K} , and line <i>m</i> contains points A	
	KeyConcept Intersections of Line	s and Planes	
	Words	Example	
	2.6 If two lines intersect, then their intersection is exactly one point.	P S Lines s and t intersect at point P .	
	2.7 If two planes intersect, then their intersection is a line.	w Planes \mathcal{F} and \mathcal{G} intersect in line w .	
	Example 2-5-1 Identifying Post	tulates	
F C _ Q/		ne Q and $\overrightarrow{AC} \parallel \overrightarrow{DE}$. State whether each postulate is e that can be used to show each statement is true or b. \overrightarrow{BE} lies in plane Q .	

c. Through points F, B, and G there is exactly one plane

¢G

d. \overrightarrow{AC} and \overrightarrow{FG} intersect at B

Examp	ole 2-5-2 Analyze Statements Using Postula	ates
	Determine whether the following statement is <i>always, sometimes,</i> or <i>never</i> true.	
Explain	n.	
A.	If plane <i>T</i> contains \overleftarrow{EF} and \overleftarrow{EF} contains point <i>G</i> .	t <i>G</i> , then plane <i>T</i> contains point
B.	\overleftarrow{GH} contains three noncollinear points.	
C.	There is exactly one plane that contains points	<i>A</i> , <i>B</i> , and <i>C</i> .
D.	Points E and F are contained in exactly one line	e.
E.	Two lines intersect in two distinct points M and	d <i>N</i> .
F.	The intersection of plane M and plane N is point	nt A.
G.	If A and B lie in plane W, then \overrightarrow{AB} lies in plan	e W.
H.	\overline{TR} lies in plane <i>M</i> .	
KeyCo	ncept The Proof Process	
Step 1	List the given information and, if possible, draw a diagram to illustrate this information.	Given (Hypothesis)
Step 2	State the theorem or conjecture to be proven.	
Step 3	Create a deductive argument by forming a logical chain of statements linking the given to what you are trying to prove.	Statements and Reasons
Stop 4	Justify each statement with a reason. Reasons include definitions, algebraic properties, postulates,	
Step 4	and theorems.	V

<u>Example 2-5-3</u> Write a Paragraph Proof
A. Given \overrightarrow{AC} intersects \overrightarrow{CD} , write a paragraph proof to show that A, C, and D determine a plane.
It is given \overrightarrow{AC} intersects \overrightarrow{CD} , so they must intersect at point C, by Postulate So Point A is on \overrightarrow{AC} and point D is on \overrightarrow{CD} . Points A, C, and D are Therefore,
B. Given that M is the midpoint of \overline{XY} , write a paragraph proof to show that $\overline{XM} \cong \overline{MY}$.
If M is the midpoint of \overline{XY} , then from the definition of midpoint of a segment, we know that=, This means that andhave the same measure. By the definition of congruent segments, we know that if the segments have the same measure they are congruent. Therefore, \cong ,
Once a conjecture has been proven true, it can be stated as a theorem and used in other proofs, the conjecture in example 3 is known as the midpoint theorem.
Theorem 2.1 Midpoint Theorem
If <i>M</i> is the midpoint of \overline{AB} , then $\overline{AM} \cong \overline{MB}$.
Recall:
Example 2-5-4 Apply the Midpoint Theorem In the figure below, point <i>B</i> is the midpoint of \overrightarrow{AC} and point <i>C</i> is the midpoint of \overrightarrow{BD} . Write a paragraph proof to prove that $AB = CD$. A = B = C = D It is given that point <i>B</i> is the midpoint of \overrightarrow{AC} and point <i>C</i> is the midpoint of \overrightarrow{BD} . So, AB = BC and $BC = BD$.

	2.6 Alg	ebraic Proof
<u>I can</u> use algebra to write two column proofs.	Properties of Real Numbers the following properties are true for any real numbers a, b, and c	
	Properties of Real Numbers the following properties are true for any real numbers a, b, and c Addition Property of Equality te Subtraction Property of Equality	
	Prove: $a = -11$ Statements	Reasons

Example 2-6-2 Literal Equations

If the distance *d* an object travels is given by d = 20t + 5, the time *t* that the object travels is given by $t = \frac{d-5}{20}$. Write a two column proof to verify this conjecture.

Begin by stating what is given and what you are to prove.

Statements	Reasons
1.d = 20t + 5	1. Given
2.	2.
3.	3.
4. $t = \frac{d-5}{20}$	4.
20	

If the formula for area of a trapezoid is $A = \frac{1}{2}(b_1 + b_2)h$, then what would be the formula in terms of height (*h*). Fill in the missing statements and reasons in the two column proof.

Statements	Reasons
1.	1.
2.	2. Multiplication Property of Equality
$3.\frac{2A}{(b_1+b_2)} = h$	3.
4.	4. Symmetric Property of Equality

Example 2-6-3 Geometric Proof

Use a two column proof to verify each conjecture. Given: $\angle A \cong \angle B, m \angle B = 2m \angle C, m \angle C = 45$ Prove: $m \angle A = 90$

Statements	Reasons
$1. \angle A \cong \angle B, \ m \angle B = 2m \angle C,$	1.
$m \angle C = 45$	
2.	2. Def of \cong angles
$3. m \angle A = 2m \angle C$	3.
4.	4. Substitution
5. $m \angle A = 90$	5.

Given: $\overline{AB} \cong \overline{CD}, \ \overline{CD} \cong \overline{RS},$ AB = 12Prove: RS = 12

Statements	Reasons
1.	1.
2.	2. Def of \cong segments
3.AB = RS	3.
4.	4. Substitution
5. <i>RS</i> = 12	5.

	2.7 Proving Segment Relationships
<u>I can</u> write proofs involving segment	In Chapter 1 we learned about the Segment Addition Postulate. It is used as a justification in many proofs.
addition and segment	Postulate 2.9 Segment Addition Postulate
congruence	Words If A, B, and C are collinear, then point B is between A and C if and only if $AB + BC = AC$.
	Symbols $ - AB - BC - - BC - $ A - B - C - - BC - - - BC - - - - - - - - - -
	← AC →
	In section 2.6, these same properties were introduced as properties of equality, now they
	can be used as properties of congruence.
	Theorem 2.2 Properties of Segment Congruence
	Reflexive Property of Congruence $\overline{AB} \cong \overline{AB}$
	Symmetric Property of Congruence If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$.
	Transitive Property of CongruenceIf $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$.
	Example 2-7-1 Using the Segment Addition Postulate PROVE that if $\overline{AB} \cong \overline{CD}$, then $\overline{AC} \cong \overline{BD}$. Given: $\overline{AB} \cong \overline{CD}$ Prove: $\overline{AC} \cong \overline{BD}$
	Statements Reasons

	2.8	Proving Angle Relationships
<u>I can</u> write proofs involving supplementary and	Postulate 2.11 Angle Addition D is in the interior of $\angle ABC$ if and on	alvif B C
and complementary angles	$m \angle ABD + m \angle DBC = m \angle ABC.$	$(x+y)^{\circ} \xrightarrow{y^{\circ}} D$
<u>I can</u> write proofs involving congruent and right angles.	Example 2-8-1: Using the An Given : $m \angle 1 = 23^\circ$, $\angle 2$ is a rig Prove : $m \angle 3 = 18^\circ$	
	Statements	Reasons
	1.	1.
	2.	2.
	3.	3.
	4.	4.
	5.	5.
	6.	6.
	Example 2-8-2 Given: $\angle QPS \cong \angle TPR$ Prove: $\angle l \cong \angle 3$	R_{2} S_{3} T_{7}
	Statements	Reasons
	1.	1.
	2.	2.
	3.	3.
	4.	4.
	5.	5.
	6.	6.

Definition of Supplementary Angles-	• Two angles are supplementary <u>if and only if</u> the
sum of their	
DEFINITIONS WORK FORWARD	S AND BACKWARDS – ARE BICONDITIONAL
Example 2-8-3: Given: $\angle 1$ and $\angle 2$ are supplementary. $\angle 2$ and $\angle 3$ are supplementary. Prove: $\angle 1 \cong \angle 3$	1 2 3
Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
Theorems	
2.6 Congruent Supplements Theorem Angles supplementary to the same a congruent angles are congruent.	ngle or to
	2.7 Congruent Complements Theorem Angles complementary to the same angle or to congruent angles are congruent.
Congruent Supplements Theorem: If $\angle 5$ and $\angle 6$ are supplementary and $\angle c$	then \rightarrow
If $\angle 1$ and $\angle 4$ are complementary and $\angle 4$	∠1 and ∠2 are complementary then \rightarrow
Linear Pair Theorem : If two angles form a linear pair, then	a they are supplementary.

Example 2-8-4

Given: $\angle 1$ and $\angle 2$ form a linear pair. $\angle 2$ and $\angle 3$ are supplementary. **Prove:** $\angle 1 \cong \angle 3$

Reasons
a.
b. linear pair theorem
c. given
d.

Theorem 2.8 Vertical Angles Theorem

If two angles are vertical angles, then they are congruent.

Abbreviation Vert. \measuredangle are \cong .

Example $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$

Example 2-8-5 Given: $\angle 1 \cong \angle 4$ **Prove:** $\angle 2 \cong \angle 3$

Statements	Reasons
1.	1.
2.	2.
3.	3.

Theore	ms Right Angle Theorems	
	Theorem	Example
	rpendicular lines intersect to form four right angles. ample If $\overrightarrow{AC} \perp \overrightarrow{DB}$, then $\angle 1, \angle 2, \angle 3$, and $\angle 4$ are rt. \measuredangle .	A
	right angles are congruent. ample If $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$ are rt. \measuredangle , then $\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$.	D 1 2 B 3 4 C
	rpendicular lines form congruent adjacent angles. ample If $\overrightarrow{AC} \perp \overrightarrow{DB}$, then $\angle 1 \cong \angle 2$, $\angle 2 \cong \angle 4$, $\angle 3 \cong \angle 4$, and $\angle 1 \cong \angle 3$.	*
is	wo angles are congruent and supplementary, then each angle a right angle. ample If $\angle 5 \cong \angle 6$ and $\angle 5$ is suppl. to $\angle 6$, then $\angle 5$ and $\angle 6$ are rt. \measuredangle .	5 6
	wo congruent angles form a linear pair, then they are ht angles.	1
Ex	tample If $\angle 7$ and $\angle 8$ form a linear pair, then $\angle 7$ and $\angle 8$ are rt. $\underline{\&}$.	✓ 7 8

Giv	ample 2-8-6: ren: $\angle 4 \cong \angle 3$ ve: $\angle 1 \cong \angle 2$	23
St	atements	Reasons
1.		1.
2.		2. Definition of congruent angles
3.	$\angle 1$ and $\angle _$ are supplementary	
	$\angle 2$ and $\angle __$ are supplementary	3.
4.		4. Definition of supplementary
5.		5.
6.		6.
7.		7.
8.	en: $\angle WXY$ is a right angle. $\angle 1 \simeq \angle 1$	8. X 2 Y
8. Giv	en: $\angle WXY$ is a right angle. $\angle 1 \cong \angle 1$ ove: $\angle 1$ and $\angle 2$ are complementary	8. x y y z z z z z
8. Giv		8. X 2 Y
8. Giv	we: ∠1 and ∠2 are complementary	8. x y y z z z z z
8. Giv	ve: ∠1 and ∠2 are complementary <u>Statements</u>	8. 3 $X \xrightarrow{2} y$ $W \xrightarrow{2} 1$ Z Reasons
8. Giv	 ve: ∠1 and ∠2 are complementary Statements 1. 	8. $X \xrightarrow{2} y$ $W \xrightarrow{2} 1$ Z Reasons 1.
8. Giv	Statements 1. 2.	8. $X \xrightarrow{z} \xrightarrow{y} \xrightarrow{y} \xrightarrow{z} \xrightarrow{y} \xrightarrow{z} \xrightarrow{y} \xrightarrow{z} \xrightarrow{z} \xrightarrow{y} \xrightarrow{z} \xrightarrow{z} \xrightarrow{z} \xrightarrow{z} \xrightarrow{z} \xrightarrow{z} \xrightarrow{z} z$
8. Giv	Statements 1. 2. 3.	8. $X \xrightarrow{2} y$ $W \xrightarrow{2} 1 z$ Reasons 1. 2. 3.