

CONGRUENT TRIANGLES

Chapter 4

\qquad
\qquad

Geometry	Classifying Triangles	4.1

Triangles can be classified by their \qquad and/or their \qquad .

Objectives:

1) classify triangles by their angle measures and side lengths
2) use triangle classification to find angle measures and side lengths

Triangle ABC use the symbol $\triangle \mathrm{ABC}$

Each point is a \qquad .

Example 4-1-1: Classify each triangle by its angles: acute. eauiansular, obtuse, or right.

Example 4-1-2: Classify the Triangle by angle measures
a. $\triangle \mathrm{BDC}$
b. $\triangle \mathrm{ABD}$

Example 4-1-3: Classify the Triangle by side lengths
a. $\triangle \mathrm{EHF}$
b. \triangle EHG
c. $\triangle \mathrm{HFG}$

Geometry

Example 4-1-4: If point M is the midpoint of $\overline{J L}$, classify $\triangle M L K, \Delta J K M$, and $\triangle K J L$ by their sides: equilateral, isosceles, or scalene.

$\triangle M L K$: \qquad
$\Delta \mathrm{JKM}$: \qquad
Δ KJL: \qquad

Example 4-1-5: If the perimeter is 47, find x and the length of each side. $x=$ \qquad

$$
\begin{aligned}
& D E= \\
& D F= \\
& E F=
\end{aligned}
$$

Why do you round the answer down instead of rounding the answer up?

Example 4-1-6: Coordinate Plane

Find the measures of the sides of $\triangle K P L$ and classify each triangle by its sides.
$\mathrm{K}(-3,-2) \mathrm{P}(1,3) \mathrm{L}(3,-3)$
$\triangle \boldsymbol{K P L}$ is a \qquad
$K P=$
$\mathrm{PL}=$
$\mathrm{KL}=$

Think and Discuss

Geometry Angle Relationships in Triangles 4.2

Objectives:

1) find the measures of interior and exterior angles of triangle
2) apply theorems about the interior and exterior angles of triangles

Auxiliary line $\rightarrow \mathrm{A}$ line added to a diagram to help analyze the diagram. (Below: $\overleftrightarrow{A D}$ was added to make a line parallel to the $\overline{B C}$ by the Parallel Postulate.)

Whenever you draw an auxiliary line, you must be able to justify its existence. Give this as the reason: Through any two points there is exactly one line.

Proof Triangle Angle-Sum Theorem

Given: $\triangle A B C$
Prove: $m \angle 1+m \angle 2+m \angle 3=180$
Proof:

Statements	Reasons
1. $\triangle A B C$	1. Given
2. Draw $\overleftrightarrow{A D}$ through A parallel to $\overline{B C}$.	2. Parallel Postulate
3. $\angle 4$ and $\angle B A D$ form a linear pair.	3. Def. of a linear pair
4. $\angle 4$ and $\angle B A D$ are supplementary.	4. If 2 \& form a linear pair, they are supplementary.
5. $m \angle 4+m \angle B A D=180$	
6. $m \angle B A D=m \angle 2+m \angle 5$	6. Angle Addition Postulate
7. $m \angle 4+m \angle 2+m \angle 5=180$	7. Substitution
8. $\angle 4 \cong \angle 1, \angle 5 \cong \angle 3$	8. Alt. Int. $£$ Theorem
9. $m \angle 4=m \angle 1, m \angle 5=m \angle 3$	9. Def. of $\cong\llcorner$
10. $m \angle 1+m \angle 2+m \angle 3=180$	10. Substitution

Example 4-2-1: Real World Application
After an accident, the positions of cars are measured by law enforcement to investigate the collision. Use the diagram drawn from the information collected to find the indicated angle measures.
a. $\mathrm{m} \angle \mathrm{XYZ}$

b. $m \angle Y W Z$

shows the Find the
$m \angle 1=$
$m \angle 2=$
$m \angle 3=$

GuidedPractice

Find the measures of each numbered angle.

1A. J

1 B.

Example 4-2-3: One of the acute angles in a right triangle measures $2 x^{\circ}$. What is the measure of the other acute angle?

Exterior Angle \rightarrow the \qquad formed by one side and a In the picture, it is angle \qquad

Remote Interior \rightarrow the interior angles that are not \qquad
 to that exterior angle In the picture, the angles are \qquad

Theorem 4.2 Exterior Angle Theorem

The measure of an exterior angle of a triangle is equal to the sum of the measures of the two remote interior angles.

Example $m \angle A+m \angle B=m \angle 1$

Example 4-2-4: Find the $m \angle F L W$ in the fenced flower garden shown.

$$
m \angle F L W=
$$

\qquad
Corollary \rightarrow A theorem that can be proven directly from another theorem.
Corollary 4.1 - the acute angles in a right triangle are \qquad
Corollary 4.2 - there can be at most one right or obtuse angle in a triangle.
Corollary - the angles in an Equiangular Triangle are \qquad .

Complete the 2-column proof of Corollary 4.1:
Given: Right triangle ABC
Prove: $\angle A$ and $\angle B$ are complementary

Statements	Reasons
1. Right triangle ABC	1.
2. $m \angle A+m \angle B+m \angle C=180$	2.
3. $m \angle C=90$	3 . Def. of right triangle
4. $m \angle A+m \angle B+90=180$	4.
5.	5. Subtraction
6. $\angle A$ and $\angle B$ are complementary	6.

Example 4-2-5: Find the $\mathrm{m} \angle \mathrm{B}$.

Example 4-2-6: Find Angle Measures in Right Triangles

$m \angle 1=$	$m \angle 2=$	$m \angle 3=$
$m \angle 4=$	$m \angle 5=$	

Think and Discuss

THEOREM	WORDS	DIAGRAM
Triangle Sum Theorem		
Exterior Angles Theorem		
Third Angles Theorem		

Geometry	Congruent Triangles

Objectives:

1. use properties of congruent triangles
2. prove triangles congruent by using the definition of congruence

Two figures are \qquad when they have corresponding angles and corresponding sides that are congruent.

KeyConcept Definition of Congurent Polygons

Theorem 4.4 Properties of Triangle Conguruence

Reflexive Property of Triangle Congruence
$\triangle A B C \cong \triangle A B C$
Symmetric Property of Triangle Congruence
If $\triangle A B C \cong \triangle E F G$, then $\triangle E F G \cong \triangle A B C$.
Transitive Property of Triangle Congruence
If $\triangle A B C \cong \triangle E F G$ and $\triangle E F G \cong \triangle J K L$, then $\triangle A B C \cong \triangle J K L$.

Example 4-3-1: Identify Corresponding Congruent Parts
Show that the polygons are congruent by identifying all of congruent corresponding parts. Then write a congruence statement.

Sides	Angles

Congruence statement:

Triangle Congruence (CPCTC)

Knowing that all pairs of corresponding parts of congruent triangles are congruent (CPCTC) can help you reach conclusions about congruent figures.

CPCTC \rightarrow Corresponding Parts of Congruent Triangles are Congruent

CPCTC \rightarrow Corresponding Parts of Congruent Triangles are Congruent

Example 4-3-2: Use Corresponding Parts of Congruent Triangles

In the diagram, $\Delta I T P \cong \triangle N G O$. Find the values of y.

Example 4-3-3: Given: $\triangle \mathrm{ABC} \cong \triangle \mathrm{DBC}$
a. Find the value of x
b. Find the $m \angle D B C$

Theorem 4.3 Third Angles Theorem

Words: If two angles of one triangle are congruent to two angles of a second triangle, then the third angles of the triangles are congruent.
Example: If $\angle C \cong \angle K$ and $\angle B \cong \angle J$, then $\angle A \cong \angle L$.

Example 4-3-4: Proving triangles congruent.
Given: $\angle \mathrm{YWX}$ and $\angle \mathrm{YWZ}$ are right angles. $\overline{Y W}$ bisects $\angle \mathrm{XYZ} . \mathrm{W}$ is the midpoint of $\overline{X Z} \cdot \overline{X Y} \cong \overline{Y Z}$

Prove: $\triangle X Y W \cong \triangle Z Y W$

Statements	Reasons
1. $\angle \mathrm{YWX}$ and $\angle \mathrm{YWZ}$ are right angles	Given
2. W is the midpoint of $\overline{X Z}$.	Given
3.	Def. of midpoint
4. $\overline{Y W}$ bisects $\angle \mathrm{XYZ}$	Given
5.	Def. of \angle bisector
6.	All right \angle 's \cong
7. $\overline{X Y} \cong \overline{Y Z}$	Given
8.	Reflexive
9.	Third \angle 's Thm
$10 . ~$	
$X Y W \cong \triangle Z Y W$	

Geometry

Example 4-3-5: Use the Third Angles Theorem

 A drawing of a tower's roof is composed of congruent triangles all converging at a point at the top. If $\angle I J K \cong \angle I K J$ and $m \angle I J K=72$, find $m \angle J I H$.

Example 4-3-6: Prove Triangles Congruent
Given: $\overline{J L} \cong \overline{P L}$, and L bisects $\overline{K M}$.
$\angle J \cong \angle P, \overline{J K} \cong \overline{P M}$
Prove: $\triangle J L K \cong \triangle P L M$

Statements		Reasons
1	$\overline{J L} \cong \overline{P L}, \angle J \cong \angle P, \overline{J K} \cong \overline{P M}$	1. Given
2	L bisects $\overline{K M}$	2. Given
3	$\overline{K L} \cong L M$	3.
4		4. Vertical Angles Thm
5	$\angle K \cong \angle M$	5.
6	$\Delta J L K \cong \triangle P L M$	6.

Think and Discuss - complete the graphic organizer

Objectives:

1. apply SSS and SAS to construct triangles and to solve problems
2. prove triangles congruent by using SSS and SAS to construct triangles and to solve problems.

Triangle Rigidity -

Example 4-4-4: Show that the triangles are congruent for the given value of the variable.
a. $\triangle M N O \cong \triangle P Q R$, when $x=5$

b. $\quad \triangle S T U \cong \triangle V W X$, when $y=4$

Example 4-4-5: Determine if SSS or SAS or neither is used in the following triangle congruency. Mark your diagram!

Ex A:
Given: A is the midpoint of $\overline{J N}$

SSS SAS Neither

Ex C:
Given: $\angle J \cong \angle N$

Ex B:
Given: $\overline{K A}$ bisects $\angle J K N$

SSS SAS Neither

SSS SAS Neither

Example 4-4-6:
Given: $\overline{B C} \| \overline{A D}, \overline{B C} \cong \overline{A D}$
Prove: $\triangle A B D \cong \triangle C D B$

Statements	Reasons	
1. $\overline{B C} \\| \overline{A D}$	1. Given	
2. $\overline{B C} \cong \overline{A D}$	2. Given	
3.	3.	
4.	4.	
5. $\quad \triangle A B D \cong \triangle C D B$	5.	

Example 4-4-7:
Given: $\overline{M N} \cong \overline{P N}, \overline{L M} \cong \overline{L P}$
Prove: $\angle L N M \cong \angle L N P$

Statements	Reasons
$1 . \overline{M N} \cong \overline{P N}, \overline{L M} \cong \overline{L P}$	1. Given
2.	2.
$3 . \triangle \mathrm{LNM} \cong \triangle L N P$	3.
$4 . \angle L N M \cong \angle L N P$	4. CPCTC

Example 4-4-8: Real World Application
A and B are on the edges of a ravine. What is $A B$?

Geometry	Proving Triangles are Congruent: ASA and AAS	4.5

Objectives:
Included side \rightarrow

1. apply ASA, AAS, and HL to construct triangles and to solve problems
2. prove triangles congruent by using ASA, AAS, and HL to construct triangles and to solve problems.

Postulate 4.3 Angle-Side-Angle (ASA) Congruence

If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.

Example If Angle $\angle A \cong \angle D$,

$$
\begin{aligned}
& \text { Side } \overline{A B} \cong \overline{D E} \text {, and } \\
& \text { Angle } \angle B \cong \angle E \text {, }
\end{aligned}
$$

then $\triangle A B C \cong \triangle D E F$.

Theorem 4.5 Angle-Angle-Side (AAS) Congruence

If two angles and the nonincluded side of one triangle are congruent to the corresponding two angles and side of a second triangle, then the two triangles are congruent.

Example If Angle $\angle A \cong \angle D$,
Angle $\angle B \cong \angle E$, and Side $\overline{B C} \cong \overline{E F}$,
then $\triangle A B C \cong \triangle D E F$.

NOTE: Two methods that CANNOT be used are: AAA and SSA

Example 4-5-1 - Use ASA to Prove Triangles Congruent

Think about
Example 4-5-1

We used ASA, can it be done with AAS? If not, why not.

If so, what additional information would you need?

Given: $\overline{W R} \| \overline{E D}, L$ is the midpoint of $\overline{W E}$
Prove: $\triangle W R L \cong \triangle E D L$

Statements	Reasons	
$1 . \overline{W R} \\| \overline{E D}, L$ is the midpoint of $\overline{W E}$	1. Given	
2.	2. def of midpoint	
3.	3.	
$4 . \angle \cong \angle$	4.	
$5 . \quad \triangle W R L \cong \triangle E D L$	5.	

Example 4-5-2 - Use AAS to Prove Triangles Congruent
Given: $\overline{K L} \cong \overline{J M}, \angle N K L \cong \angle N J M$
Prove: $\overline{L N} \cong \overline{M N}$

Reflexive

Example 4-5-3: Use AAS to prove the triangles congruent

Given: $\angle X \cong \angle V, \angle Y Z W \cong \angle Y W Z, \overline{X Y} \cong \overline{V Y}$
Prove: $\triangle X Y Z \cong \triangle V Y W$

Statements	Reasons
1. $\angle X \cong \angle V, \angle Y Z W \cong \angle Y W Z$, $X Y$ $\cong Y$	1. Given
2. $\triangle X Y W \cong \triangle V Y Z$	2.
3. $\overline{Y Z} \cong \overline{Y W}$	3.
4. $\angle \cong \angle$	4. Congruent Supplements Thm.
5. $\triangle X Y Z \cong \triangle V Y W$	5.

Example 4-5-4: Which method would you use? Support your reasoning with correct markings on the diagram.
A.

B.

C.

Given: $\overline{J L}$ bisects $\angle K L M . \angle K \cong \angle M$.

Example 4-5-5: Flow Proof

4.5 - Extension: Right Triangle Congruence: HL

Theorem 4.9 Hypotenuse-Leg Congruence If the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and corresponding leg of another right triangle, then the triangles are congruent.

Abbreviation HL

Example 4-5-6: Determine if you can use the HL Congruence Theorem to prove the triangles congruent. If not, tell what else you need to know.

Yes
No: \qquad

Yes

B.

No: \qquad

Example 4-5-7:
Given: $\overline{A B} \perp \overline{B C}, \overline{D C} \perp \overline{B C}, \overline{A C} \cong \overline{B D}$
Prove: $\overline{\mathrm{AB}} \cong \overline{D C}$

Statements	Reasons
$1 \cdot \overline{A B} \perp \overline{B C}, \overline{D C} \perp \overline{B C}$	1. Given
$2 \cdot \overline{B C} \cong \overline{B C}$	2.
3.	3. Def. of \perp
4.	4. All right $\angle^{\prime} s \cong$
$5 \cdot \overline{A C} \cong \overline{B D}$	5. Given
$6 . \triangle A B C \cong \triangle D C B$	6.
$7 \cdot \overline{\mathrm{AB}} \cong \overline{D C}$	7.

Example 4-5-8: Determine whether each pair of triangles is congruent. If yes, tell which postulate or theorem applies.
A.

B.

C.

Yes: \qquad No
Yes: \qquad No
E.

Yes: \qquad No
Yes: \qquad No

Geometry	Isosceles and Equilateral Triangles	4.6

Objectives:

1. prove theorems about isosceles and equilateral triangles
2. apply properties of isosceles and equilateral triangles

Isosceles triangle \rightarrow An isosceles triangle has two congruent sides called the legs. The angle formed by the legs is called the vertex angle. The other two angles are called base angles. You can prove a theorem and its converse about isosceles triangles.
$\angle 1$ is the vertex angle.
$\angle 2$ and $\angle 3$ are the base angles.
In this diagram, the base angles are \qquad and \qquad ; the vertex angle is \qquad -.

Theorems Isosceles Triangle

4.10 Isosceles Triangle Theorem

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.
Example If $\overline{A C} \cong \overline{B C}$, then $\angle 2 \cong \angle 1$.

4.11 Converse of Isosceles Triangle Theorem

If two angles of a triangle are congruent, then the sides opposite those angles are congruent.
Example If $\angle 1 \cong \angle 2$, then $\overline{F E} \cong \overline{D E}$.

Example 4-6-1: Congruent Segments and Angles
A. Name two unmarked congruent angles.
B. Name two unmarked congruent segments.

Corollaries Equilateral Triangle

4.3 A triangle is equilateral if and only if it is equiangular.

Example If $\angle A \cong \angle B \cong \angle C$, then

$$
\overline{A B} \cong \overline{B C} \cong \overline{C A} .
$$

4.4 Each angle of an equilateral triangle measures 60 .

Example If $\overline{D E} \cong \overline{E F} \cong \overline{F E}$, then

$$
m \angle A=m \angle B=m \angle C=60
$$

A. Find $m \angle R$.
B. Find $P R$.

Example 4-6-3: Find Missing Values

Find the value of each variable.

Example 4-6-4: The length of $\overline{Y X}$ is 20 feet. Explain why the length of $\overline{Y Z}$ is the same.

Example 4-6-5: Find each angle measure.
a. $\mathrm{m} \angle \mathrm{F}$

b. $\mathrm{m} \angle \mathrm{G}$

Example 4-6-6: - Find each value.
a. x

b. y

Example 4-6-8:
Given: $\overline{Y W}$ bisects $\overline{X Z} \overline{X Y} \cong \overline{Y Z}$
Prove: $\angle X Y W \cong \angle Z Y W$

Statements	Reasons
1. $\overline{Y W}$ bisects $\overline{X Z} \overline{X Y} \cong \overline{Y Z}$	1. Given
2. $\overline{X W} \cong \overline{W Z}$	2.
3. $\overline{Y W} \cong \overline{Y W}$	3.
4. $\Delta X Y W \cong \triangle Z Y W$	4.
5. $\angle X Y W \cong \angle Z Y W$	6.

Example 4-6-9: Using CPCTC with another Thm.
Given: $\overline{N O} \| \overline{M P}, \angle N \cong \angle P$
Prove: $\overline{M N} \| \overline{O P}$

Statements	Reasons	
1. $\overline{N O} \\| M P, \angle N \cong \angle P$	1. Given	
2. $\angle N O M \cong \angle P M O$	2.	
3. $\overline{M O} \cong \overline{M O}$	3.	
4. $\triangle M N O \cong \triangle O P M$	4.	
5. $\angle N M O \cong \angle P O M$	5.	
6. $\overline{M N} \\| \overline{O P}$	6.	

	Def of $\Delta \cong$	SSS	SAS	ASA	AAS	HL
Words	$\begin{aligned} & \text { All } \angle^{\prime} S \cong \\ & \text { All sides } \cong \end{aligned}$	All 3 sides \cong	2 sides $\cong \&$ Included angle \cong	$2 \angle ' s$ and included side \cong	$\begin{aligned} & 2 \angle ' s \text { and } \\ & \text { un-included } \\ & \text { side } \cong \end{aligned}$	Hypotenuse Leg in a right Δ
Pictures						\sqrt{V}

Geometry	Coordinate Proof

1. Position and label triangles for use in coordinate proofs.
2. Write coordinate proofs.

Apply the distance formula to all 3 sides of each triangle:

$$
d=\sqrt{\left(\mathrm{y}_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}}
$$

or
$\mathrm{d}=\sqrt{(\operatorname{leg})^{2}+(\operatorname{leg})^{2}}$

Example 4-8-1: Proof in the Coordinate Plane
Given: $D(-5,-5), E(-3,-1), F(-2,-3)$, $G(-2,1), H(0,5)$ and $I(1,3)$
Prove: $\angle D E F \cong \angle G H I$

$D E=\sqrt{(-1--5)^{2}+(-3--5)^{2}}$	
	Or $\sqrt{(4)^{2}+(2)^{2}}=$
$E F=$	
$F D=$	
$G H=$	
$H I=$	
$I G=$	

a) $\triangle X Y W \cong \triangle Z Y W$? Yes No

If yes, how? \qquad
b) $\angle D E F \cong \angle G H I$ by \qquad

Strategies for doing Coordinate Proof

1. Use origin as a vertex
2. center figure at the origin
3. center side of figure at origin KeyConcept Placing Triangles on Coordinate Plane
4. use axes as sides of figure

Step 1 Use the origin as a vertex or center of the triangle.
Step 2 Place at least one side of a triangle on an axis.
Step 3 Keep the triangle within the first quadrant if possible.
Step 4 Use coordinates that make computations as simple as possible.

Example 4-8-2: Position and Label a Triangle

Position and label right triangle $X Y Z$ with leg d units long on the coordinate plane.

Example 4-8-3: Identify Missing Coordinates

Name the missing coordinates of isosceles right triangle $Q R S$.

Example 4-8-4: SSS on the Coordinate Plane
Triangle $D V W$ has vertices $D(-5,-1), V(-1,-2)$, and $W(-7,-4)$. Triangle $L P M$ has vertices $L(1,-5), P(2,-1)$, and $M(4,-7)$.
a) Graph both triangles on the same coordinate plane.
b) Use your graph to make a conjecture as to whether the triangles are congruent. Explain your reasoning.
c) Write a logical argument that uses coordinate geometry to support the conjecture you made in part b.

Apply the distance formula to all 3 sides of each triangle:

$$
\sqrt{\left(\mathrm{y}_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}} \text { or } \mathrm{d}=\sqrt{(\operatorname{leg})^{2}+(\operatorname{leg})^{2}}
$$

$D V=\sqrt{(-1--5)^{2}+(-2--1)^{2}}$ or $\mathrm{d}=\sqrt{(5)^{2}+(1)^{2}}$
$V W=$
$W D=$
$L P=$
$P M=$
$M L=$

