

QUADRILATERALS

Chapter 6

GEOMETRY

Name _____

Hour _____

6-1 Angles of Polygons

	RECALL POLYGO	NS
Polygon: A plane	that meets	the following conditions.
 It is formed by such that no noncollinear Each side into 	oy or more segm sides with a : tersects exactly	ents called, endpoint are other sides, one at each
A polygon is contains a point in t	if no line that conta if no line that conta the interior of the polygon	ins a side of the polygon 1.
A polygon that is no	ot convex is called	or
A polygon is	if all of its	sides are congruent.
A polygon is congruent.	if all of its :	interior angles are
A polygon is	if it is	and
a.	e polygon is regular. b.	c.
Polygon Interior Angle Sum Theorem	The sum of the interior a <i>n</i> -sided convex polyc	angle measures of an gon is $(n-2) \cdot 180$.

	Example 6-1-4: Find the measure of each interior angle of pentagon ABCDE.
	$B = \begin{bmatrix} C & D \\ 32c^{\circ} & 32c^{\circ} \\ 18c^{\circ} & 35c^{\circ} \\ A & 18c^{\circ} \end{bmatrix} = \begin{bmatrix} C & D \\ B & 35c^{\circ} \\ B & $
$\frac{(n-2)180}{n}$	Example 6-1-5: Find the measures of <u>each</u> interior angle of each regular polygon. A. Decagon n = B. Heptagon n =
Find the measure of the exterior angle by subtracting the interior angle from 180.	Example 6-1-6: The measure of an interior angle of a regular polygon is 135. Find the number of sides in the polygon.
Exterior total is 360°	
Divide 360 by the exterior angle measure to know how many	Polygon Exterior Angle Sum TheoremThe sum of the exterior angle measures of a convex polygon, one angle at each vertex, is 360.
polygon.	Example 6-1-7: Finding Exterior Angle Measures in Polygons
	A. Find the value of b in polygon FGHJKL. $ \begin{array}{c} J \\ 16b^{\circ} \\ K \\ 10b^{\circ} \\ G \\ 15b^{\circ} \\ F \\ 28b^{\circ} \end{array} $
	B. Find the measure of each exterior angle of a regular dodecagon.
	$m \angle H = \{o} m \angle J = \{o} m \angle K = \{o}$
	$m \angle HL = \\circ \qquad m \angle F = \\circ \qquad m \angle G = _\\circ$

6-2 Parallelograms

I CAN	PARALLELOGRAMS	
prove and apply properties of parallelograms	Any polygon with four sides is a	~~~,c
use properties of parallelograms	some quadrilaterals have special properties.	
problems	These special quadrilaterals are given their own nam	es.
	<u>Parallelogram</u> →	
	Use the symbol for parallelogram.	
	Properties of Parallelograms	
	If a quadrilateral is a parallelogram, then	
	are congruent.	₩ M
	If a quadrilateral is a parallelogram, then	JK
	are congruent.	M
	If a quadrilateral is a parallelogram, then	$J \xrightarrow{X^{\circ}} y^{\circ}$
	$\frac{1}{1} are$ supplementary. x + y = 180	$M \xrightarrow{y^{\circ} x^{\circ}} L$
	If a quadrilateral has one right angle, then	
	it has right angles.	ML
	If a quadrilateral is a parallelogram, then	J. K
	the bisect each other.	M
	If a quadrilateral is a parallelogram, then	AB
	a cuts the parallelogram into 2 triangles.	

I can Prove that a given quadrilateral is	You have learned to identify the properties of a will be given the properties of a quadrilateral a quadrilateral is a parallelogram.	a parallelogram. NOW you and will have to tell if the
a parallelogram.	You can do this by using the definition of a para conditions below.	allelogram OR the
	<u>Parallelogram</u> \rightarrow both pair of	are parallel.
	Conditions For Parallelo	ograms
	theorem	example
ſ	If <u>opposite sides are</u>	B C C
	1and congruent.then the quadrilateral is a parallelogram.	
	2 If <u>of opposite</u> sides are congruent. then the guadrilateral is a parallelogram.	
	If <u>opposite</u> <u>are congruent</u> in a quadrilateral, then the quadrilateral is a parallelogram.	
	If a quadrilateral's 4 bisect each other, then the quadrilateral is a parallelogram.	A
	Example 6-3-1: Verifying Figures are Parallel A. Show that <i>JKLM</i> is a B. Show the parallelogram for $a = 3$ and $b = 9$ parallelogram for $a = 3$ and $b = 9$ parallelogram for $15a - 11 / 10a + 4$ 15a - 11 / 10a + 4	ograms that PQRS is a ogram for $a = 2.4$ and $b = 9$ $Q_{7a} \sqrt{(10b - 16)^{\circ} (9b + 25)^{\circ}} \sqrt{\frac{R}{2a + 12}} $

<u>Section Summary</u> – In each box sketch a parallelogram and label it to show how it meets the conditions for a parallelogram

I can		
Prove and apply properties of rectangles. determine whether parallelograms are rectangles	WARM-UP: ABCD is a parallelogram. Find e 1. CD = 2. m∠C 5y	each measure. $= \underbrace{\begin{array}{c} B \\ (16x - 4)^{\circ} \\ (14x + 34)^{\circ} \end{array}}_{A} C$ $= \underbrace{\begin{array}{c} 2y + 8 \\ D \end{array}}_{D}$
	The first type of special quadrilateral we learne	ed about is a
	A second type of special quadrilateral is a	
	· · · · · · · · · · · · · · · · · · ·	$A \square \square D$ Rectangle ABCD
	Properties of Rectangles	·····g····
	Theorem	Hypothesis
	If a parallelogram is a rectangle, then	
	If a parallelogram is a rectangle, then	J K M L
	Since a rectangle is a special type of a parallelograms that	arallelogram, it "inherits" you learned in Lesson 6.2.
	Example 6-4-1: Algebra with Rectangles	S T
	Quadrilateral RSTU is a rectangle. If $m \angle RTU = 8x + 4$ and $m \angle SUR = 3x - 2$, find x.	R U

6-6 Trapezoids

I can	PROPERTIES OF TRAPEZOIDS	
	A is a quadrilateral with _ sides.	pair of
	The sides of a trapezoid are the	ne of the trapezoid.
	For each of the bases of a trapezoid, there which are the two that have the	e is a pair of, nat base as a side.
	The sides of a trapezoid are called	base angles
	If the of a trapezoid are congruent, then the trapezoid is an 	leg leg
	The of a trapezoid is the segment that connects the midpoints of its legs.	A base base angles
	Isosceles Trapezo	pids
	Theorem	Hypothesis
	If a trapezoid is isosceles, then	
	If a trapezoid has , then	
	A trapezoid is isosceles iff it is	

I can…	Summarizing Properties of Quadrilaterals	
	quadrilateral	
	kite parallelogram trapezoid	
	rhombus rectangle	
	square	
	Example 1: Identifying Quadrilaterals	
	<i>ABCD</i> has at least two congruent consecutive sides. What quadrilaterals meet this condition?	
	Example 2: Connecting Midpoints of Sides When you join the midpoints of the sides of an isosceles trapezoid in order, what special quadrilateral is formed why?	

SPECIAL QUADRILATERALS - REVIEW

