

6-1 Angles of Polygons

I CAN...	INTERIOR ANGLES OF QUADRILATERALS
Classify polygons abased on their sides and angles find and use the measures of interior and exterior angles of polygons	A \qquad of a polygon is a segment that joins two \qquad vertices. Like triangles, quadrilaterals have both \qquad and \qquad angles. Interior Angles of a Quadrilateral: The sum of the measures of the interior angles of a quadrilateral is 360°. $m \angle 1+m \angle 2+m \angle 3+m \angle 4=360^{\circ}$ Example 6-1-1: Interior Angles of a Quadrilateral Find $m \angle \mathrm{~F}, \mathrm{~m} \angle \mathrm{G}$, and $m \angle \mathrm{H}$. RECALL

	Example 6-1-4: Find the measure of each interior angle of pentagon ABCDE.
$\frac{(n-2) 180}{n}$	Example 6-1-5: Find the measures of each interior angle of each regular polygon. A. Decagon $n=$ \qquad B. Heptagon $\mathrm{n}=$ \qquad
Find the measure of the exterior angle by subtracting the interior angle from 180.	Example 6-1-6: The measure of an interior angle of a regular polygon is 135. Find the number of sides in the polygon.
Exterior total is 360°	
Divide 360 by the exterior angle measure to know how many angles/sides in the polygon.	Polygon The sum of the exterior angle measures of a convex Exterior Angle Sum Theorem polygon, one angle at each vertex, is 360.
	Example 6-1-7: Finding Exterior Angle Measures in Polygons
	A. Find the value of b in polygon FGHJKL.
	B. Find the measure of each exterior angle of a regular dodecagon. $\mathrm{m} \angle \mathrm{H}=$ \qquad \circ $\mathrm{m} \angle \mathrm{J}=$ \qquad - $\mathrm{m} \angle \mathrm{K}=$ \qquad $\mathrm{m} \angle \mathrm{HL}=$ \qquad \circ $\mathrm{m} \angle \mathrm{F}=$ \qquad。 $\mathrm{m} \angle \mathrm{G}=$ \qquad ${ }^{\circ}$

6-2 Parallelograms

I CAN...	PARALLELOGRAMS	
prove and apply properties of parallelograms use properties of parallelograms to solve problems	Any polygon with four sides is a \qquad . However, some quadrilaterals have special properties. These special quadrilaterals are given their own nan Parallelogram \rightarrow Use the symbol for parallelogram. Properties of Parallelograms	
	If a quadrilateral is a parallelogram, then ... are congruent.	
	If a quadrilateral is a parallelogram, then ... are congruent.	
	If a quadrilateral is a parallelogram, then ... \qquad are supplementary. $\mathbf{x + y}=180$	
	If a quadrilateral has one right angle, then ... it has \qquad right angles.	
	If a quadrilateral is a parallelogram, then ... the \qquad bisect each other.	
	If a quadrilateral is a parallelogram, then ... a \qquad \qquad cuts the parallelogram into 2 triangles.	

	Example 6-2-1: In parallelogram CDEF, $D E=74 \mathrm{~mm}, D G=31 \mathrm{~mm}$, and $m \angle F C D=42^{\circ}$. Find each measure. A. $C F=$ \qquad B. $m \angle E F C=$ \qquad C. $D F=$ \qquad Example 6-2-2: Using the Properties of Parallelograms GHJK is a parallelogram. Find the unknown length. a. $\mathrm{JH}=$ \qquad b. $\mathrm{LH}=$ \qquad Example 6-2-3: Using the Properties of Parallelograms In parallelogram $\mathrm{ABCD}, \mathrm{m} \angle \mathrm{C}=105^{\circ}$. Find the angle measure. a. $\mathrm{m} \angle A=$ \qquad b. $\mathrm{m} \angle \mathrm{D}=$ \qquad Example 6-2-4: Using Algebra with Parallelograms WXYZ is a parallelogram. Find the value of x.

6-3 Tests for Parallelograms

I can...			
Prove that a given quadrilateral is a parallelogram.	You have learned to identify the properties of a parallelogram. NOW you will be given the properties of a quadrilateral and will have to tell if the quadrilateral is a parallelogram.		
	You can do this by using the definition of a parallelogram OR the conditions below. Parallelogram \rightarrow both pair of \qquad are parallel.		
	Conditions For Parallelograms		
		theorem	example
	1	If opposite sides are \qquad and congruent, then the quadrilateral is a parallelogram.	
	2	If \qquad of opposite sides are congruent, then the quadrilateral is a parallelogram.	
	3	If opposite \qquad are congruent in a quadrilateral, then the quadrilateral is a parallelogram.	
	4	If a quadrilateral's \qquad bisect each other, then the quadrilateral is a parallelogram.	

Example 6-3-1: Verifying Figures are Parallelograms

A. Show that $J K L M$ is a
B. Show that $P Q R S$ is a parallelogram for $a=3$ and $b=9$ parallelogram for $a=2.4$ and $b=9$

	REASONING ABOUT PARALLELOGRAMS Example 6-3-2: Proving Facts about Parallelogram Given: ABCD is a Parallelogram Prove: $\angle 2 \cong \angle 4$ Statements Reasons 1. 1. Given 2. 2. Def of Parallelogram 3. 3. Corresponding 4. 4. Alt. Interior Angles $5 . \angle 2 \cong \angle 4$ 5. Example 6-3-3: Applying Conditions for Parallelograms Determine if each quadrilateral must be a parallelogram. Justify your answer. A. D. \qquad \qquad G. \qquad \qquad B. E. \qquad \qquad H. C. \qquad \qquad F. \qquad \qquad I.			

Section Summary - In each box sketch a parallelogram and label it to show how it meets the conditions for a parallelogram

6-4 Rectangles

I can ...	
Prove and apply properties of rectangles. determine whether parallelograms are rectangles	WARIM-UP: $A B C D$ is a parallelogram. Find each measure. l. $C D=$ \qquad 2. $m \angle C=$ \qquad
	The first type of special quadrilateral we learned about is a
	A second type of special quadrilateral is a \qquad
	Properties of Rectangles
	Theorem \quad Hypothesis
	If a parallelogram is a rectangle, then...
	If a parallelogram is a rectangle, then...
	Since a rectangle is a special type of a parallelogram, it "inherits" all the properties of parallelograms that you learned in Lesson 6.2. Example 6-4-1: Algebra with Rectangles Quadrilateral RSTU is a rectangle. If $m \angle R T U=$ $8 x+4$ and $m \angle S U R=3 x-2$, find x .

6-5 Rhombi \& Squares

6-6 Trapezoids

	C. Find the value of x so that $P Q S T$ is isosceles. Trapezoid Midsegment Theorem The midsegment of a trapezoid is parallel to each base and its length is one half of the sum of the lengths of the bases. Example 6-6-8: Finding Midsegment Lengths of Trapezoids A potter crafts a trapezoidal relish dish, placing a divider, shown by $\overline{A B}$, in the middle of the dish. How long must the divider be to ensure that it divides the legs in half?
	Example 6-6-9: Finding Lengths Using Midsegments A. Find GH. B. Find $E F$. C. Find $E H$.

SPECIAL QUADRILATERALS - REVIEW

I can...	Summarizing Properties of Quadrilaterals
	quadrilateral kite parallelogram trapezoid rhombus rectangle square Example 1: Identifying Quadrilaterals $A B C D$ has at least two congruent consecutive sides. What quadrilaterals meet this condition?
	Example 2: Connecting Midpoints of Sides When you join the midpoints of the sides of an isosceles trapezoid in order, what special quadrilateral is formed why?

	Three ways to prove a quadrilateral is a rhombus 1. You can use the definition and show that the quadrilateral is a parallelogram that has four congruent sides. It is easier, however, to use the Rhombus corollary and simplify show that all four sides of the quadrilateral are congruent. 2. Show that the quadrilateral is a parallelogram and that the diagonals are perpendicular. 3. Show that the quadrilateral is a parallelogram and that each diagonal bisects a pair of opposite angles. Example 3: Proving a Quadrilateral is a Rhombus The coordinates of $A B C D$ are $A(-2,5), B(1,8), C(4,5)$, and $D(1,2)$. Show that $A B C D$ is a Rhombus. Parallelogram Check: Diagonals bisect each other? $\mathrm{AC}=\mathrm{BD}$ Rhombus Check: Diagonals Perpendicular? $\overline{A C} \perp \overline{B D}$ Example 5: Identifying a Quadrilateral The diagonals of $A B C D$ intersect at point N to form four congruent isosceles triangles: $\triangle A N B \cong \triangle C N B \cong \triangle C N D \cong \triangle A N D$. What type of quadrilateral is $A B C D$? Prove that your answer is correct.

