CHAPTER 7

Proportions and Similarity Geometry

7-1 Ratio and Proportion

I can...	
Write and simplify ratios.	RATIO compares two numbers by division. Written 3 ways: a to $b, a: b$, or \qquad , where $\mathrm{b} \neq 0$.
Use proportions to solve problems	Example 7-1-1: Writing Ratios
	The number of students who participate in sports programs at Central High School is 520 . The total number of students in the school is 1850 . Find the athlete-to-student ratio to the nearest tenth.
	Example 7-1-2: Writing and Simplifying Ratios a) The ratio of the side lengths b) In $\triangle E F G$, the ratio of the of a triangle is $4: 7: 5$, and its measures of the angles is perimeter is 96 cm . What is $5: 12: 13$. Find the measures of the length of the shortest the angles. side?
	Proportion In the proportion $\quad \frac{a}{b}=\frac{c}{d} \quad a$ and d are the \qquad
	KeyConcept Cross Products Property
	Words In a proportion, the product of the extremes equals the product of the means.
	Symbols \quad If $\frac{a}{b}=\frac{c}{d}$ when $b \neq 0$ and $d \neq 0$, then $a d=b c$.
	Example If $\frac{4}{10}=\frac{6}{15}$, then $4 \cdot 15=10 \cdot 6$.

7-2 Ratios in Similar Polygons

7-3 Similar Triangles

7-4 Applying Properties of Similar Triangles

7.6 \& 9.6 Dilations and Similarity

Example 7-6-3: Find and Use a Scale Factor

PHOTOCOPYING A photocopy of a receipt is 1.5 inches wide and 4 inches long. By what percent should the receipt be enlarged so that its image is 2 times the original? What will be the dimensions of the enlarged image?

Note: You can verify that a dilation produces a similar figure by comparing corresponding sides and angles. For triangles, you can also use AA~, SSS~, or SAS~.
Example 7-6-4: Finding Coordinates of Similar Triangles
Given that $\triangle T U O \sim \Delta R S O$, find the coordinates of U and the scale factor.

Example 7-6-5: Proving Triangles are Similar
Given: $E(-2,-6), F(-3,-2), G(2,-2), H(-4,2)$, and $J(6,2)$.
Prove: $\triangle E H J \sim \triangle E F G$

KeyConcept Dilations in the Coordinate Plane

To find the coordinates of an image after a dilation centered at the origin, multiply the x - and y-coordinates of each point on the preimage by the scale factor of the dilation, k.

Symbols
$(x, y) \rightarrow(k x, k y)$

Example

