Geometry Unit 2 - Foundations of Geometry

 Chapter 9

"It is not enough to have a good mind. The main thing is to use it well."

— Reneé Descartes

Reflections - 9.1

If two figures are congruent, is one necessarily a reflection of the other?	An isometry can also be referred to as a \qquad transformation. A \qquad is a transformation with rigid motion where every point is the \qquad from the line of reflections.
How do you know when a transformation is a reflection?	Example 1: Identifying Reflections Tell whether each transformation appears to be a reflection. A. \square B.
	Example 1 Reflect a Figure in a Line Copy the figure and the given line of reflection. Then draw the reflected image in this line using a ruler. Step 1 Draw a line through each vertex that is perpendicular to line k. Step2 Measure the distance from point A to line k. Then locate A^{\prime} the same distance from line k on the opposite side Step 3 Repeat Step 2 to locate points B^{\prime} and C^{\prime}. Then connect vertices A^{\prime}, B^{\prime}, and C^{\prime} to form the reflected image.
When given the preimage and the image, how could you locate the line of reflection?	Example 2-Drawing Reflections Copy the triangle and the line of reflection. Draw the reflection of the triangle across the line.
$\triangle J K Q \triangle J^{\prime} K^{\prime} Q^{\prime}$ How we say it: $\triangle J K Q$ maps onto	Notation: A transformation maps every point of a figure onto its image and may be desribed with arrow notation \rightarrow Prime notation (') is sometimes used to identify image points.

Translations - 9.2

What is the
difference
between a
translation and a
reflection?

A translation is a transformation where all the points of a figure are moved the same distance in the same direction.

Example 1 - Identifying Translations

Tell whether each transformation appears to be a translation.
A.

B.

Example 1 Draw a Translation

Copy the figure and the given translation vector. Then draw the translation of the figure along the translation vector.
Step 1 Draw a line through each vertex parallel to vector \vec{w}
Step 2 Measure the length of vector \vec{w}. Locate point X^{\prime} by marking off this distance along the line through vertex X, starting at X and in the same direction as the vector.
Step 3 Repeat Step 2 to locate points Y^{\prime} and Z^{\prime}. Then connect vertices X^{\prime}, Y^{\prime}, and Z^{\prime} to form the translated image.

$\stackrel{\rightharpoonup}{w}$

How do you know that the distance between each point and its image is the same for each pair of corresponding points?

How do you know that the direction each point has moved is the same for each pair of corresponding points?

Example 2 - Drawing Translations

Copy the quadrilateral and the translation vector. Draw the translation along the vector.

Rotations - 9.3

	A \qquad is a transformation in which a figure is \qquad ab a \qquad point. The \qquad point is the \qquad Rotations can be clockwise or counterclockwise.
How is a rotation different from a reflection?	Example 1 - Identifying Rotations Tell whether each transformation appears to be a rotation. A. B.
Copy $\triangle A B C$ protractor and rotation of \triangle Step 1 Draw Step 3 Use a that K $A^{\prime} \cdot a$	d point K. Then use a ruler to draw a 140° $B C$ about point K. segment from A to K. aler to draw A^{\prime} such ' $=K A$. Step2 Draw a 140° angle using $\overline{K A}$. Step 4 Repeat Steps 1-3 for vertices B and C and draw $\triangle A^{\prime} B^{\prime} C^{\prime}$.

Rotation Exploration

Directions: What pattern do you notice happens each time between the coordinates of the preimage and the coordinates of the image?

Composition of Transformation - 9.4

	Composition of Transformations -> a combination of two or more transformations, each performed on the previous image. Glide Reflection -> a combination of a reflection and a translation. A composition of two isometries is an isometry.
Example 1 - Drawing Compositions of Isometries	$\Delta K L M$ has vertices $K(4,-1), L(5,-2)$, and $M(1,-4)$. Rotate $\Delta K L M$ 180° about the origin and then reflect it across the y-axis.
Example 2	Take the logo for the royals shown... If you were to describe the motion from B to B' to B'' with only a single transformation, what would you call it?

Symmetry - 9.5

	Symmetry -> When two or more parts are identical after a translation, reflection or rotation. Line of Symmetry: Aline that divides a figure into two parts such that, when the figure is folded along the line, the two parts of the figure coincide.
How do you locate a figures line of symmetry?	Example 1 - Identifying Line Symmetry Tell whether each figure has line symmetry. If so, copy the shape and draw all lines of symmetry. A. B. C. Yes No Yes No Yes No
	Example 2 Draw a figure with 3 lines of symmetry:
	A figure has rotational symmetry (or radial symmetry) if it can be rotated about a point by an angle greater than 0° and less than 360° so that the image coincides with the pre-image. Order of symmetry - the number of times the figure maps onto itself as it rotates Magnitude of symmetry - angle of rotation (Magnitude $=360 \div$ order) KeyConcept Rotational Symmetry A figure in the plane has rotational symmetry (or radial symmetry) if the figure can be mapped onto itself by a rotation between 0° and 360° about the center of the figure, called the center of symmetry (or point of symmetry). Examples The figure below has rotational symmetry because a rotation of $90^{\circ}, 180^{\circ}$, or 270° maps the figure onto itself.

How do you determine a figure's angle of rotational symmetry?	Example 3- Identifying Rotational Symmetry Tell whether each figure has rotational symmetry. If so, give the angle of rotational symmetry and the order. A. Yes No Angle rotation: \qquad B. Yes No Angle rotation: \qquad Order: \qquad C. Yes No Angle rotation: \qquad Order: \qquad Order: \qquad
	Example 4-Real World Application Describe the symmetry of each icon. Copy each shape and draw any lines of symmetry. If there is rotational symmetry, give the angle and the order. A. Line or Rotational Symmetry \# of lines: \qquad Angle rotation: \qquad Order: \qquad B. Line or Rotational Symmetry \# of lines: \qquad Angle rotation: \qquad Order: \qquad
	A three-dimensional figure has plane symmetry if a plane can divide the figure into two congruent reflected halves. A three-dimensional figure has symmetry about an axis if there is a line about which the figure can be rotated (by an angle greater than 0° and less than 360°) so that the image coincides with the pre-image.
How can you tell if a 3-d figure has plane symmetry?	Example 5 - Identifying Symmetry in Three Dimensions Tell whether each figure has plane symmetry, symmetry about an axis, or neither. A. square pyramid B.

