Order of Ops. \& Evaluating

I can...	- Simplify numeric expressions using the proper order of operations. - Evaluating expressions
ORder of OPERAHIONS	"Operations" mean things like add, subtract, multiply, divide, squaring, etc. If it isn't a number or variable it is probably an operation. To stop the madness, long long ago people agreed to follow rules when doing calculations, and they are: How Do I Remember It All ...? BEDMAS ! B Brackets first E Exponents (also Powers and Square Roots, etc.) DM Division and Multiplication (left-to-right) AS Addition and Subtraction (left-to-right) Divide and Multiply rank equally (and go left to right). Add and Subtract rank equally (and go left to right) Examples: Simplify each expression 1. $(7-\sqrt{ } 9) \cdot(3+1)$ 2. $30-\|5-15\|$
Evaluating expressions	Examples: Evaluate each expression if $a=4, b=-5, c=-2, d=3, \& g=6$. 1. $a b^{2}-d$ 2. $\|c+b\|+a$ 3. $(b-d g)$ 4. $\mathrm{a}(\mathrm{b}+\mathrm{c})+d$ 5. $-b(a+(c-d))$ 6. $a d-\frac{g^{2}}{c}$

Solving Equations (review)

	We can solve an equation by using \qquad to \qquad the variable in the equation. Guidelines: - Simplify both sides first (may include distributing) - Use inverse operations to isolate the variable (get the variable alone on one side of the equation.) - Undo addition or subtraction, before undoing multiplication or division. (SADME)
Example I	Solve $\frac{1}{2} x-5=10$ Check: Substitute in the answer you got.
Example 2	Solve $64-12 w=5 w+3$ Write the original equation. Collect variable on the \qquad side by \qquad Simplify. Collect constants on the \qquad side by \qquad \qquad each side by \qquad _. Simplify.
Example 3	Solve $\frac{2}{5}(10 x+15)=18-4(x-3)$ Write the original problem. Distribute the ـ. \qquad Check: Substitute in the answer you got.
Example 4	Solving a Temperature Conversion Formula Solve $K=\frac{5}{9}(F-32)+273$ for F.

\square

Solve Linear Systems by Substitution

Solve Linear Systems by Elimination

Solving Systems using Elimination Steps	(Method 2-Elimination METHOD: $\begin{aligned} & -3 y+3 x=-9 \\ & 0=y-6 x+2 \end{aligned}$ $-3 y+3 x=-9$ 1. Arrange equations so like terms are stacked, like this... $-y+6 x=2$ 2. Create a pair of opposites by multiplying one or both equations 3. Add the columns together 4. Solve for the remaining variable $\begin{aligned} (-31)-y+6 x & =(2)(-3) \\ -3-3 y x & =-9 \\ -3 y-18 x & =-6 \\ --15 x & =-15 \\ \frac{-15}{-15} & =-15 \\ -x & =1 \end{aligned}$ 5. Substitute to solve for the other variable. $\begin{aligned} -3 y+3(1) & =-9 \\ -3 y+3 & =-9 \\ -3 y & =-12 \\ y & =4 \end{aligned}$ \qquad
1. Stack like terms 2. Create a pair of opposites by multiplying one or both equations 3. Add the columns together 4. Solve for the remaining variable 5. Substitute to solve for the other variable	Use elimination to solve each system of equations. 1) $\left\{\begin{array}{l}2 x+3 y=11 \\ -2 x+9 y=1\end{array}\right.$ 2) $\left\{\begin{array}{l}3 x+4 y=0 \\ x-4 y=-8\end{array}\right.$

