NOTES Ch 9A Lesson 2 - Graphing Parabolas (Quadratics) in Standard Form

$$y = ax^2 + bx + c$$

STEPS:

- 2. y-intercept = ______
- 3. Find the _____ of the vertex using _____
- 4. Plug that answer into the original equation to find the _____ of the vertex
- 5. Write the ordered pair for the vertex (x, y)
- 6. Write your vertex in the table and choose two x-values bigger than the x-value in your vertex. Then find their y-values.
- 7. Use symmetry to find two more points.
- 8. Connect points with a _____ and put ____ on both ends.

EXAMPLES:

1. $y = x^2 - 6x + 10$

 $a = \underline{\hspace{1cm}} b = \underline{\hspace{1cm}} c = \underline{\hspace{1cm}}$

Opens: up or down

Normal, Narrow (skinny), or Wide (fat)

Maximum or Minimum

y-intercept:

$$x = \frac{-b}{2a} = \underline{\qquad} \text{(vertex)}$$

Plug back into equation to find y (vertex):

Vertex: (____,___)

Axis of symmetry: x =

 $a = \underline{\hspace{1cm}} b = \underline{\hspace{1cm}} c = \underline{\hspace{1cm}}$ Opens: up or down

Normal, Narrow (skinny), or Wide (fat)

Maximum or Minimum

y-intercept:

$$x = \frac{-b}{2a} = \underline{\qquad} \text{(vertex)}$$

Plug back into equation to find y (vertex):

Vertex: (_____,___)

Axis of symmetry: $x = \underline{}$

3.
$$y = x^2 - 4x + 8$$

$$a =$$
____ $b =$ ____ $c =$ ____

Opens: up or down

Normal, Narrow (skinny), or Wide (fat) Maximum or Minimum

y-intercept: ___

Vertex: (

$$x = \frac{-b}{2a} =$$
 _____ (vertex)

Plug back into equation to find y (vertex):

$$a = \underline{\hspace{1cm}} b = \underline{\hspace{1cm}} c = \underline{\hspace{1cm}}$$

Opens: up or down

Normal, Narrow (skinny), or Wide (fat)

Maximum or Minimum

y-intercept:

$$x = \frac{-b}{2a} = \underline{\qquad} \text{(vertex)}$$

Plug back into equation to find y (vertex):

4. $y = -2x^2 - 1$

Vertex: (______)

Axis of symmetry: $x = \underline{}$

Axis of symmetry: x =

5.
$$y = -x^2 + 3$$

$$a = \underline{\hspace{1cm}} b = \underline{\hspace{1cm}} c = \underline{\hspace{1cm}} \phi$$

Opens: up or down

Normal, Narrow (skinny), or Wide (fat) Maximum or Minimum

y-intercept: _____

$$x = \frac{-b}{2a} = \underline{\qquad} \text{(vertex)}$$

Plug back into equation to find y (vertex):

$$a = \underline{\hspace{1cm}} b = \underline{\hspace{1cm}} c = \underline{\hspace{1cm}}$$

Opens: up or down

Normal, Narrow (skinny), or Wide (fat) Maximum or Minimum

y-intercept: _____

$$x = \frac{-b}{2a} = \underline{\qquad} \text{(vertex)}$$

Plug back into equation to find y (vertex):

Axis of symmetry: x = 1

Axis of symmetry: x = 1

