Chapter 8a Student Success Sheet (SSS)

Operations with Polynomials

Olathe East High Scho	ool – Intermediate Algebra
Name:	i
1	Hour:
1	

Need Help? Support is available!

- www.mhollan.weebly.com
- www.srushingoe.weebly.com

"There are no secrets to success. It is the result of preparation, hard work, and learning from failure."

Colin Powell

Concept #	What we will be learning	# of Videos
1	Describing and classifying polynomials	1
2	Adding and subtracting polynomials	1
3	Multiplying: monomial with trinomial	1
4	Multiplying: binomial with binomial (FOIL)	1
5	Multiplying: binomial with trinomial	1

	Those descri	be polyno	mial d	•
Constant Linear	The b	e	I see	1
Quadratic				2
Cubic Quartic	That term	has a num	ber before	3
Quantic	The I c		_, LC for short	5

Concept 1: Describing and Classifying Polynomials

We can classify polynomials in two ways:

* $\underline{\text{highest degree}}$ (largest exponent)

* number of terms

Usually write polynomials in **standard form**: from highest exponent to lowest exponent - in order counting down!

We describe polynomials with **TWO** names as well as by the **LEADING COEFFICIENT** (the number in front of the term with the highest exponent).

Degree	Name
0	
1	
2	
3	
4	
5	

# of	Name
terms	Nallie
1	
2	
3	
4 or more	

<u>Polynomial</u>	<u>Degree</u>	<u>Name</u>	# of terms	<u>Name</u>	<u>Leading</u> Coefficient
1. $-7v^5$	5	quintic	1	monomial	<u>-7</u>
$29a^3 - 8a^2 - 2a + 5$	3	cubic	4	polynomial	- 9
3. $-k^2 + 10$					
4. p ⁴					
5. 5 <i>a</i>					
6. $10p^4 + 7p^3$	4	quartic	2	binomial	10
7. $-9p - 2$	1	linear	2	binomial	-9
$810x^5 - 7x^2 - 8x$					
9. $6x^2$					
10. x^5					
11. $3m^5 - 4m^4 + 2m + 1$					
128	0	constant	1	monomial	-8
13. $3a^2 - 3a - 3$	2	quadratic	3	trinomial	3
14. $-7a^3$					
15. $-5x + 7$					
16. $3m^4 - 7$					
17. 3 m					
18. $9m^4 + 8m$					
193					
20. $-8p^2 - 9p$					

Sentence Frame: This is a

with a leading coefficient of _

(constant, linear, quadratic, cubic, quartic, quintic)

(monomial, binomial, trinomial, polynomial)

Concept 2: Adding and Subtracting Polynomials

Sentence Frame: This is a ______ with a leading coefficient of ____. (constant, linear, quadratic, (monomial, binomial,

(constant, linear, quadratic, cubic, quartic, quintic)

(monomial, binomial, trinomial, polynomial)

21.
$$(4n-3n^4-5n^2)-(3n+7n^2+8n^4)$$

22.
$$(7-2v^4-6v)+(3v^3-6+6v^4)$$

23.
$$(k^2 + 3k^3 + 5k^5 - 2k^4) - (-k^2 + 7k^3 + k^5 - k^4)$$

24.
$$(5x^5 + 4x^2 + 2x^4) + (6 + 7x - 3x^5) + (4 - 6x^4 - 7x)$$

25.
$$(8x^3 + 4x^4 + 4x^2 + 7x^5) - (-8x^4 - 2x^5 - 7 - 4x^2) + (-5x^3 + 8x^2 + 7 - 4x^4)$$

26.
$$(-2n^2 - n^5 - 2n - 8) - (5n^2 + 6n^4 + 8n + n^5) - (-2n^4 - 2n - n^2 - 6)$$

Concept 3: Multiplying: Monomial with Trinomial

1. D	•	the	monomial
1. D	!	une	monomia

EX:
$$-8m(m^2 + 6m - 6)$$

EX:
$$-x^2(-7x^2-3x-4)$$

$$-8m^3 - 48m^2 + 48m$$

	$-7x^2$	-3x	-4
$-1x^2$			

27.
$$-8(-4n^2-3n+1)$$

28.
$$-4(7x^2 - 5x - 5)$$

29.
$$-8x(7x^2-6x-6)$$

30.
$$-5m^2(-3m^2-2m-6)$$

31.
$$5n^2(n^2 + n - 2)$$

32.
$$4(-a^2-4a-5)$$

Concept 4: Multiplying: Binomial with Binomial

Multiply (2x - 8)(5x + 7).

"BOX" method

"FOIL" method

	2 <i>x</i>	-8
5 <i>x</i>	$10x^2$	-40x
+7	14 <i>x</i>	-56

F (first)
$$10x^2$$
 I (inner) $-40x$

O (outer)
$$14x$$
 L (last) -56

33.
$$(k+5)(k-2)$$

34.
$$(5x + 8)(5x + 6)$$

35.
$$(7n+5)(7n-3)$$

36.
$$(8x-4)(7x+4)$$

37.
$$(n-7)(5n-4)$$

38.
$$(4b-2)(3b-5)$$

39.
$$(3n+5)^2$$

40.
$$(7a - 3)(7a + 3)$$

Concept 5: Multiplying: Binomial with Trinomial

While we can use a variation of FOILing to multiply binomials with trinomials, it is easiest to use the "BOX" method here as well.

$$(5k+2)(5k^2+k+1)$$

	$5k^2$	+k	+1
5 <i>k</i>	$25k^{3}$	$5k^2$	5 <i>k</i>
-2	$-10k^{2}$	-2k	-2

Combine like terms: $25k^3 - 5k^2 + 3k - 2$

41.
$$(n-5)(7n^2-8n+8)$$

42.
$$(7x-2)(3x^2+8x-1)$$

43.
$$(2m^2 + 5m + 7)(3m + 6)$$

44.
$$(4v^2 - 2v + 6)(8v - 7)$$