A STATE OF THE PARTY OF THE PAR

Chapter 10B Student Success Sheet (SSS)

Radical Expressions and Geometry

Olathe East High School - Intermediate Algebra

I						
Name:_		 				 I
, I			F	Ιου	ır: _	
						-

Need Help? Support is available!

- www.mhollan.weebly.com
- www.srushingoe.weebly.com

"There are no secrets to success. It is the result of preparation, hard work, and learning from failure."

Colin Powell

Concept #	What we will be learning	# of videos
7	Solving radical equations (radical on one side only); check for extraneous solutions	
8	Solving radical equations (radicals on both sides); check for extraneous solutions	
9	Midpoint Formula	
10	Distance Formula	

CONCEPT 7 - Solving Radical Equations (radical on one side only)

check for extraneous solutions

How do you get rid of a radical?

What does it mean to "check for extraneous solutions"?

61)
$$\sqrt{x+5} = 2$$

62)
$$\sqrt{2k+18} = 2$$

63)
$$10 = \sqrt{1 - 99p}$$

$$64) \sqrt{\frac{n}{4}} = 1$$

(5)
$$\sqrt{-9 - 9m} = 9$$

66)
$$0 = \sqrt{-10 - x}$$

CONCEPT 8 - Solving Radical Equations (radicals on both sides)

check for extraneous solutions

67)
$$\sqrt{19 - 2v} = \sqrt{3v - 21}$$

68)
$$\sqrt{3n-2} = \sqrt{2n}$$

69)
$$\sqrt{6k} = \sqrt{5k+1}$$

$$70) \ \sqrt{\frac{a}{7}} = \sqrt{90 - 2a}$$

71)
$$\sqrt{13-n} = \sqrt{n+3}$$

CONCEPT 9 – Midpoint Formula

Given two ordered pairs:
$$(x_1, y_1)$$
 and (x_2, y_2) The midpoint is: $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

Plot the points (6,3) and (-4,-1) on the coordinate plane below.

(3,9) (8,0)	(<u>+</u> , <u>+</u>)	73) (6, -2) (-7, 10)	$\left(\begin{array}{cccc} + & + \\ \hline 2 & \end{array}, \begin{array}{cccc} + & \\ \hline 2 & \end{array}\right)$
74) (9, -6) (7, 0)		75) (-8, -9) (-8, 10)	

CONCEPT 10 – Distance Formula

Given two ordered pairs: (x_1, y_1) and (x_2, y_2)

The distance between the two points is: $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$

Plot the points (6,3) and (-4,-1) on the coordinate plane below.

$$d = \sqrt{(-)^2 + (-)^2}$$

$$(-6,6)$$

$$(5, -4)$$

$$d = \sqrt{(-)^2 + (-)^2}$$

$$d = \sqrt{(-)^2 + (-)^2}$$

$$(7, -5)$$

$$d = \sqrt{(-)^2 + (-)^2}$$

