Chapter 6 Student Success Sheet (SSS)

Systems of Equations and Inequalities

Olathe East High School - Intermediate Algebra

Name:	 Hour:	Reminders: Homework is completed in homework notebook only. All pages in homework notebook should be labeled accordingly:
1	nour:	Unit Concept (title of assignment)
1	·	Examples:
		Unit 1 Concept 1 – Practice Quiz
		Unit 1 Concept 1-4 – Practice Test

Need Help? Support is available!

- www.mhollan.weebly.com
- www.srushingoe.weebly.com

"The difference between a successful person and others is not a lack of strength, not a lack of knowledge, but rather in a lack of will."

Vincent T. Lombardi

Concept #	What we will be learning	Mandatory Practice
1	Finding slopes of parallel and perpendicular lines	Practice Quiz 1
2	Identifying if two lines are parallel, perpendicular, or neither	Practice Quiz 2
3	Writing equations of parallel and perpendicular lines	Practice Quiz 3
4	Solving systems by graphing	Practice Quiz 4
5	Solving systems by substitution	Practice Quiz 5
6	Solving systems using elimination/linear combination	Practice Quiz 6
7	Graphing linear inequalities on a coordinate plane	Practice Quiz 7
8	Graphing systems of linear inequalities	Practice Quiz 8

#1 Finding slopes of parallel and perpendicular lines.

	Parallel lines	Perpendicular lines	NEITHER parallel nor perpendicular, called
Described as	Two lines that	Two lines that	Two lines that
Looks like			

Symbol	NO SYMBOL! @
Sample equations	
The tricky ones (horizontal and vertical lines)	
Key word to remember	

GIVEN EQUATION	Slope	Par. slope	Perp. slope	GIVEN EQUATION	Slope	Par. slope	Perp. slope
1. y = 1	1			13. $y = -x + 4$	l		
$y = -\frac{2}{5}x - 1$	_			$y = -\frac{3}{4}x + 3$	1		
3. $y = x + 2$				15. $y = x$			
$y = \frac{3}{4}x + 2$	ı			$y = \frac{4}{5}x - 5$ 16.			
5. y = -x + 3				17. y = 5x - 5			
6. $x = -2$	1						
7. $y = 2x - 5$				18. $y = -3x - 4$	1		
$y = -\frac{1}{5}x + 4$ 8.	1.			19. <i>x</i> = 4			

9.	x - y = -1		
10.	6x - y = -5		
		,	
11.	3x - y = -3	<u> </u>	
12.	3x + 2y = 2	L.,	
4			·
	· .		
L			

20. $y = 2x - 3$		
21. $y = x - 1$		
22. $y = -6x - 2$		
23. $y = \frac{1}{2}x$	1	
24. $y = 5$		
25. $y = 5x + 1$		
26. $y = -7x + 3$		
27. $y = x + 4$		
$28. y = -\frac{6}{5}x + 4$	L	

#2 Identifying if 2 lines are parallel, perpendicular, or neither.

If they are parallel, they will have the _____ slope

If they are perpendicular, their slopes will be _____

If the slopes are not the _____ OR _____, then the lines are _____!

29)
$$y = \frac{1}{2}x - 1$$

 $y = \frac{5}{2}x + 3$

30)
$$y = \frac{4}{3}x - 1$$

 $y = \frac{1}{3}x + 2$

31)
$$y = \frac{5}{2}x + 3$$

 $y = \frac{5}{2}x - 4$

32)
$$y = \frac{1}{2}x + 1$$

 $y = -\frac{1}{2}x + 3$

33)
$$x - y = -3$$

 $x - y = 3$

34)
$$2x - y = 1$$

 $x + 2y = 8$

35)
$$x - y = 3$$

 $x + y = -1$

36)
$$x-2y=-6$$

 $3x+4y=-8$

1. Use what you know about parallel and perpendicular lines to find m

4. Plug in m, x, and y into the formula

#3 Writing equations of parallel and perpendicular lines.

		, x= = mx + b like	_, y= :=_ () + b					e for b	nto your equat		our final answ
37. th	rough: (3	3, 0), para	illel to $y =$	4			38. th	rough: (-	-1, 4), pa	arallel to y	=-4x	-3
Current slope:	Parallel slope:	m=		_(_	_) + b		Current slope:	Parallel slope:	m=		_(_) + b
		x=	,						x=			
		y=							y=			
39. thro	ough: (–4,	4), parallel to	$y = -\frac{3}{4}x +$	3			40. thr	ough: (1,	-5), paral	lel to y = -7.	x + 4	***************************************
Current slope:	Parallel slope:	m=		(_) + b		Current slope:	Parallel slope:	m=		_(_	_) + b
		x=							x=			
		y=			4.4 <u>.</u>				у=			
41. thro	ough: (–5,	–4), paralle	$el to y = \frac{7}{5}x$	- 1			42. thro	ough: (5, 0), parallel t	$xo y = -\frac{1}{5}x + \frac{1}{5}$	4	
Current slope:	Parallel slope:	m=		_(_	_) + b		Current slope:	Parallel slope:	m=		_() + b
		x=			-			-	x=			
		у=							у=		,	
43. thr	ough: (2,	-1), perp.	to $y = 3x -$	4]]	44. thr	ough: (–:	(5, -1), pe	rp. to $y = -$	x + 3	
Current slope:	Perpend -icular slope:	m=			_) + b		Current slope:	Perpend -icular slope:	m=	=		_) + b
		X=						ООРСІ	x=			
		y=							у=			
45. thro	ough: (-3, -	-2), perp. to	$y = -\frac{3}{7}x + 2$	2			46. thro	ough: (1,	0), perp.	to $y = -4$,	
Current slope:	Perpend- icular slope:	m=	=	_(_	_) + b		Current slope:	Perpend- icular slope:	m=		_(_	_) + b
		x=							x=			
		y=							y=			
	L					! I				L		© Crystal Kirch

through: $(-3, 3)$, perp. to $y = -\frac{3}{2}x - 1$							
Current slope:	Perpend -icular slope:	m=	=()+b				
		X=	·				
		y=					

through: (1, 1), perp. to $y = -\frac{1}{4}x + 2$							
Current slope:	Perpend -icular slope:	m=	() + b				
		x=					
		y=					

#4 Solving systems by graphing.

SYSTEM OF EQUATIONS is			, A SOLUTION to a SYSTEM is				
2 Lines can cros	SS	2 Lines can cross		_ 2 Lines can cross	3		
(could be		(must be)	(they are the	····		
could be							
	solution		solution		solution		

- 1. Graph the _____, THEN Graph the _____
- 2. See where they _____!
- 3. You MUST _____ into both equations!

49.

$$y = x - 3$$
$$y = -1$$

Line 1:

Y-intercept: y = x + 4

Slope: $y = -\frac{5}{3}x - 4$

Rise: _____Run: _____

<u>Line 2:</u>

Y-intercept: _____

Slope:

Rise: _____Run: ____ **Check your answer:**

Solution:

50.

$$y = x + 4$$

<u>Line 1:</u>

Y-intercept: _____

Slope:

Rise: _____Run: _____

Line 2:

Y-intercept: _____

Slope:

Rise: Run:

Check your answer:

51.

$$y = -\frac{7}{2}x - 3$$
$$y = -\frac{7}{2}x + 1$$

<u>Line 1:</u>

Y-intercept: $y = \frac{7}{4}x - 4$

Slope: y=3

Rise: _____Run: ____

Y-intercept: ____

Slope: _____

Rise: Run: ____

Check your answer:

52.

$$y = \frac{7}{4}x - 4$$

Solution:

Line 1: -

Y-intercept:

Slope:

Rise: ___Run: ____

<u>Line 2:</u>

Y-intercept: _____

Slope:

Rise: _____Run: ____

Check your answer:

Solution:

Solution:

53.

$$2x - y = -4$$

Line 1:

X-intercept: _____

Y-intercept: _____

Line 2:

X-intercept:

Y-intercept: _____

Check your answer:

54.

$$x - 2y = 2$$

Line 1:

X-intercept: _____

Y-intercept: _____

<u>Line 2:</u>

X-intercept: _____

Y-intercept:

Check your answer:

Solution:

Solution:

55.

$$x - y = -1$$
$$2x + y = 4$$

<u>Line 1:</u>

X-intercept: _____

Y-intercept: _____

<u>Line 2:</u>

X-intercept: _____

Y-intercept: _____

Check your answer:

56.

$$2x + 3y = 12$$

<u>Line 1:</u>

X-intercept: _____

Y-intercept: _____

<u>Line 2:</u>

X-intercept: _____

Y-intercept: _____

Check your answer:

Solution:

Solution:

8

#5 Solving systems by substitution.

	Types	tems				
	:					
	one solution	no solution	<u> </u>	infinitely many solutions		
			· · · · · · · · · · · · · · · · · · ·			
	How many times do the graphs cross?	How many time the graphs cro		How many times d the graphs cross		
		Answerlooks	like:	Answer looks like	:: · · · ·	
	Answer looks like:					
•	,					_
	Picture would look like:	Picture would loo	ok like:	Picture would look l	ike:	
5.	How do we check our solution?	How do we check ou	r solution?	How do we check our so	olution?	
1.	One solution [You will get an answ		d then	to get a		Your
2	answer will be an like			. while you	aro colving the	
2.	No solution [you will get aproblem]	Statement such a	is OI	withe you	are soming the	-
3.	Infinitely many solutions [you will solving the problem]	get astate	tement such a	or	while you a	are

$$y = 3x + 7$$
57. $-4x + 4y = 12$

STEP 1: Substitute & Solve (for "x")	STEP 2: Plug Back In (use "the substitute")	STEP 3: Check (use "the game")
-4x + 4y = 12	If $x = -2$	If $x = -2$ and $y = 1$
-4x + 4(3x + 7) = 12	y = 3x + 7	ordered pair (-2,1)
-4x + 12x + 28 = 12	y = 3(-2) + 7	-4x + 4y = 12
8x + 28 = 12	y = -6 + 7	-4(-2)+4(1)=12
(subtract 28 from both sides)	y=1	8 + 4 = 12
8x = -16	™ acen-unitratacociaisco	12 = 12 :)
(divide both sides by 8)		It checks!
x=-2		The answer is (-2,1)

$$4x - 3y = 7$$
58. $y = 3x - 4$

STEP 1: Substitute & Solve (for "x")	STEP 2: Plug Back In (use "the substitute")	STEP 3: Check (use "the game")
*		

$$3x + 3y = 3$$

59. $y = -2x + 5$

STEP 1: Substitute & Solve (for "x")	STEP 2: Plug Back In (use "the substitute")	STEP 3: Check (use "the game")
<		

$$6x + 2y = 3$$
60. $y = -3x - 2$

STEP 1: Substitute & Solve (for "x")	STEP 2: Plug Back In (use "the substitute")	STEP 3: Check (use "the game")
,		

$$y = x - 4$$

61. $3x - 3y = 12$

STEP 1: Substitute & Solve (for "x")	STEP 2: Plug Back In (use "the substitute")	STEP 3: Check (use "the game")
	·	
- -		

$$y = 4x + 10$$

62. $-x - 2y = 7$

STEP 1: Substitute & Solve (for "x")	STEP 2: Plug Back In (use "the substitute")	STEP 3: Check (use "the game")

$$y = 4x + 12$$

63. $-12x + 3y = 36$

STEP 1: Substitute & Solve (for "x")	STEP 2: Plug Back In (use "the substitute")	STEP 3: Check (use "the game")

y = 4x + 3 64 - 8x + 2y = -3

STEP 1: Substitute & Solve (for "x")	STEP 2: Plug Back In (use "the substitute")	STEP 3: Check (use "the game")

#6 Solving systems using elimination/linear combination.

Let's practice!		Numbers	LCM	
		2 & 6		
If I had 2 and 5, the LCM would be		1 & 7		
		4 & 6		
2 * =		4 & 8		
5* =		4 & 5		
J 1		1 & 2		
If I had 2 and 4, the LCM would be		2 & 3		
		2 & 5		
2 * = <u>}</u>		6 & 15		
4 * =		3 & 4		
		10 & 15		

When we solve using elimination, we want to

- 1) Find the LCM of either the x-coefficients or the y-coefficients (it doesn't matter!)
- 2) **Distribute a number into each equation** to make the coefficients into that LCM, but one positive and one negative. <u>We call these "opposite LCMs"</u>
- 3) Add the equations together to eliminate that variable.
- 4) Continue on with Steps 2 and 3

-5x - 2y = -	-18				
Let's try with #65 $5x + 6y = -6$	5 LCM of the x's: 5 LCM of the y's	: 6 \rightarrow Let's eliminate the x's!			
	Right now, the top equation has an x -coefficient of -5 \rightarrow -5 * 1 = $\mathbf{-5}$ Right now, the bottom equation has an x -coefficient of +5 \rightarrow +5 * 1 = 5				
STEP 1: Eliminate & Solve (for "x" or "y")	STEP 2: Plug Back In (use either equation)	STEP 3: Check (use the equation you DIDN'T use in step 2!)			
$(-5x-2y=-18)1$ $(5x+6y=-6)1$ I put parentheses around the whole equation and distributed what I needed to get "opposite LCMs" $5x-2y=-18$ $5x+6y=-6$ Add these two equations together (straight down) $0x+4y=-24$ $X's \ are \ eliminated!$ $4y=-24$ $Divide \ by \ 4$ $y=-6$	If y = -6 and $-5x - 2y = -18$ $(top equation)$ then $-5x - 2(-6) = -18$ $-5x + 12 = -18$ $-5x = -30$ $x = 6$	If $y = -6$ and (ordered pair answer $(6, -6)$) and $5x + 6y = -6$ (bottom equation) then $5(6) + 6(-6) = -6$ $30 - 36 = -6$ $-6 = -6:)$ it checks!			

#66		CM of the x's: 8 LCM of the y'	The second of th
-4x + y = 5 $-8x + 2y = 10$	Right now, the top equation has an y -coefficient of $-4 \rightarrow$ $-4 * \underline{-2} = \underline{-8}$ Right now, the bottom equation has an y -coefficient of $-8 \rightarrow$ $-8 * 1 = \underline{-8}$		
	EP 1: Eliminate & Solve STEP 2: Plug Back In		STEP 3: Check (use the equation you DIDN'T use in step 2!)
(-4x + y = 1) $(-8x + 2y = 1)$	5) – 2	Because we got a true statement,	* Special Case – True Statement! -4x + y = 5
I put parentheses around the what I needed to get $8x-2y=$	nole equation and "opposite LCMs"	we can skip this step and head right to the check!	add 4x to both sides $y = 4x + 5$
-8x + 2y = Add these two equations togeth $0x + 0y =$	ner (straight down) = 0	If we are right, and there are INFINITELY MANY SOLUTIONS,	-8x + 2y = 10 $add 8x to both sides$ $2y = 8x + 10$
****X's AND Y's are elir $0=0$ True Staten		then the graphs will be the SAME LINE	divide all parts by 2 $y=4x+5$ $SAME\ LINE!$

3x + 3y = 15 Right now, th	LCM of the x's: 12 LCM of the y's: 12 \rightarrow Let's eliminate the x's! Right now, the top equation has an x-coefficient of +3 \rightarrow +3 * $\frac{4}{3}$ = $\frac{12}{3}$ = $\frac{12}{3}$ Right now, the bottom equation has an x-coefficient of +4 \rightarrow +4 * $\frac{1}{3}$ = $\frac{12}{3}$		
STEP 1: Eliminate & Solve (for "x" or "y")	STEP 2: Plug Back In (use either equation)	STEP 3: Check (use the equation you DIDN'T use in step 2!)	
(3x + 3y = 15)4 $(4x + 4y = 16) - 3$ I put parentheses around the whole equation and distributed what I needed to get "opposite LCMs" $12x + 12y = 60$ $-12x - 12y = -48$ Add these two equations together (straight down) $0x + 0y = 12$ ****X's AND Y's are eliminated!**** $0 = 12$ False Statement	Because we got a false statement, we can skip this step and head right to the check! If we are right, and there is NO SOLUTION, then the graphs will have the SAME SLOPE	*Special Case – False Statement! $3x + 3y = 15$ subtract $3x$ from both sides $3y = -3x + 15$ divide all parts by 3 $y = -1x + 5$; slope of -1 $4x + 4y = 16$ subtract $4x$ from both sides $4y = -4x + 16$ divide all parts by 4 $y = -1x + 4$; slope of -1 SAME SLOPE!	

#68	LCM of the x's	: LCM of the y's:	→ Let's eliminate the 's!
-2x + 3y = -12 $2x - 6y = 12$	Right now, th	ne top equation has ancoefficien	t of * =
	Right now, the	bottom equation has ancoeffici	ient of + =
STEP 1: Eliminat (for "x" or "		STEP 2: Plug Back In (use either equation)	STEP 3: Check (use the equation you DIDN'T use in step 2!)
N .			
			esk en skilling griner til i s

#69	LCM of the x's	s: LCM of the y's:	→ Let's eliminate the 's!
-2x + 6y = 4 $-2x + 6y = 0$	Right now, th	ne top equation has ancoefficient	of * =*
	Right now, the	e bottom equation has ancoefficie	ent of + =
STEP 1: Elimina (for "x" or '	<u> </u>	STEP 2: Plug Back In (use either equation)	STEP 3: Check (use the equation you DIDN'T use in step 2!)
	r		

#70	LCM of the x's:	LCM of the y's:	→ Let's eliminate the 's!
-x + 4y = -7 $-x + 6y = -11$	Right now, the	e top equation has ancoefficie	ent of * =
	Right now, the k	bottom equation has ancoeffi	icient of + =
STEP 1: Eliminat (for "x" or "		STEP 2: Plug Back In (use either equation)	STEP 3: Check (use the equation you DIDN'T use in step 2!)
· · · · ·			
-			

#71	LCM of the x's: CCM of the y's: \rightarrow Let's eliminate the 's!						
4x + 4y = 12 $8x - 6y = -4$	Right now, th	Right now, the top equation has ancoefficient of * =*					
	Right now, the	bottom equation has ancoeffic	cient of → * =				
STEP 1: Elimina: (for "x" or '	I	STEP 2: Plug Back In (use either equation)	STEP 3: Check (use the equation you DIDN'T use in step 2!)				

#72	LCM of the x's:	LCM of the y's:	→ Let's eliminate the 's!
6x + 2y = -6 $-3x - y = 7$	Right now, the	e top equation has ancoefficie	nt of * =
	Right now, the I	bottom equation has ancoeffi	cient of > * =
STEP 1: Eliminat (for "x" or "		STEP 2: Plug Back In (use either equation)	STEP 3: Check (use the equation you DIDN'T use in step 2!)
e e e			

#73	LCM of the x's	s: LCM of the y's:	→ Let's eliminate the 's!
4x + 6y = -18 $-5x - 2y = -5$	Right now, t	he top equation has ancoefficier	nt of * =*
	Right now, the	e bottom equation has ancoeffic	sient of >* =
STEP 1: Eliminat		STEP 2: Plug Back In (use either equation)	STEP 3: Check (use the equation you DIDN'T use in step 2!)
	,		
	s		

#74	LCM of the x's	S;	LCM of the y's	s:	→ Let's	s eliminate	e the	's!
-2x + 5y = 13 $3x - 4y = -9$	Right now, th	ne top equat	ion has an	-coefficient	t of	·	*	= 1
	Right now, the	e bottom equ	uation has an	coeffici	ent of	_ >	_ *	
STEP 1: Elimina (for "x" or	1		2: Plug Bac se either equation,		(use the equ	STEP 3: Cation you Dli		n step 2!)
	ļ							
:								
ter.								

17

#75	LCM of the x	's:	LCM of th	e y's:	→ Let's e	liminate the	's!
15x + 5y = 0 $6x + 2y = 0$	Right now,	Right now, the top equation has ancoefficient of * =					
	Right now, th	e bottom e	equation has	ancoeffic	ient of	→*_	
STEP 1: Eliminat (for "x" or "	J				STEP 3: Check (use the equation you DIDN'T use in step 2!)		
			·				

#76	LCM of the x's	: LCM of the y's:	→ Let's eliminate the 's!				
2x + 2y = 6 $3x - 5y = 17$	Right now, th	Right now, the top equation has ancoefficient of * =*					
	Right now, the	bottom equation has ancoeffic	cient of > * =				
STEP 1: Eliminat (for "x" or "		STEP 2: Plug Back In (use either equation)	STEP 3: Check (use the equation you DIDN'T use in step 2!)				
See a							
	<u></u>						

Test point #2

Test point #2

Test point #1

Test point #1

#7 Graphing linear inequalities on a coordinate plane.

1. Decide if the line will be _____ or ____ Sleepy Man: **Angry Man:** 2. Graph the _____ normally! 3. Pick _____ ordered pairs to t____, ONE ON _____ of the line. 4. Write "_____" on the side that is _____ and "_____" on the side that is _____ 5. _____ on the side you wrote "_ 105. $y \le 6x + 3$ 104. y > -2x - 3Solid or dashed: Solid or dashed: Uphill positive, downhill negative, Uphill positive, downhill negative, horizontal zero, vertical undefined horizontal zero, vertical undefined Rise: ______ Run: _____ Rise: _____ Run: ____ Y-intercept: Y-intercept: _____

Test point #1

106. $y \ge -3$	10	$107. y \ge x + 2$	10
Solid or dashed:	4	Solid or dashed:	4
Uphill positive, downhill negative,	2	Uphill positive, downhill negative,	2
horizontal zero, vertical undefined	10 -8 -6 -4 -2 2 4 6 8 1	horizontal zero, vertical undefined	-10 -8 -6 -4 -2 -2 4 6 8 10
Slope:	4	· Slope:	4
Rise: Run:	6	Rise: Run:	6
Y-intercept:	8	Y-intercept:	

Test point #1

Test point #2

108. x > -2

Solid or dashed:

Uphill positive, downhill negative,

horizontal zero, vertical undefined

Slope:

Rise: _____ Run: ____

Y-intercept:

tive, fined -10 -8 -6 -4 -2 2 4 6 8

109. x - 5y < 5

Solid or dashed:

X-intercept:

Y-intercept: _____

(for practice)

Slope:

Rise: _____ Run: _

Uphill positive, downhill negative,

horizontal zero, vertical undefined

Test point #1

Test point #2

Test point #1

Test point #2

110. $x - y \le 2$

Solid or dashed:

X-intercept:

Y-intercept: _____

(for practice)

Slope:

Diag. Dum.

Uphill positive, downhill negative, horizontal zero, vertical undefined

Test point #1

Test point #2

 $111. x - 2y \le 2$

Solid or dashed:

X-intercept:

Y-intercept:

(for practice)

_.

Slope:

Uphill positive, downhill negative,

horizontal zero, vertical undefined

Test point #1

#8 Graphing systems of linear inequalities.

- 1. Graph the first inequality and shade in one color (pick 2 test points)
- 2. Graph the second inequality and shade in ANOTHER color (pick 2 test points)
- 3. The solution is the part that is shaded by both colors!

Line 1: Color
Solid or dashed
Uphill positive, downhill negative,
horizontal zero, vertical undefined
Slope:
Rise: Run:
Y-intercept:
Test point #1

1: Color
i or dashed
ill positive, downhill negative,
zontal zero, vertical undefined
e:
: Run:
tercept:
point #1

Test	point	#2

Line 1. Color

	$y \ge -\frac{2}{3}$	$\frac{2}{3}x - 1$
L12.	$y \ge \frac{2}{3}x$	+3

Line 2: Color_

Solid or dashed

Uphill positive, downhill negative, horizontal zero, vertical undefined

Rise: _____ Run: ____

Y-intercept: _____

Test point #1

Test point #2

Line 1. Coloi		
Solid or dashed		
Uphill positive, downhill negative,		
horizontal zero, vertical undefined		
Slope:		
Rise: Run:		
Y-intercept:		
Test point #1		

Test	point	#2

Line 2: Color__

Solid or dashed

Uphill positive, downhill negative, horizontal zero, vertical undefined

Slope: _____

Rise: _____ Run: ____

Y-intercept: _____

Test point #1

Chapter 6 Notes – Systems of Equations – Intermediate Algebra

Line 1: Color ______
Solid or dashed
Uphill positive, downhill negative,
horizontal zero, vertical undefined

Slope: _____ Run: ____

Y-intercept: _____

Test point #1

Test point #2

 $\begin{array}{c}
 y \ge -2 \\
 114. \quad y \ge \frac{4}{3}x + 2
 \end{array}$

Line 2: Color

Solid or dashed

Uphill positive, downhill negative, horizontal zero, vertical undefined

Slope: _____

Rise: _____ Run: ____

Y-intercept: _____

Test point #1

Test point #2

Line 1: Color _____

Solid or dashed

Uphill positive, downhill negative, horizontal zero, vertical undefined

Slope:

Rise: _____ Run: ____

Y-intercept: _____ Test point #1

Test point #2

115. $x \ge 3$

Line 2: Color_____

Solid or dashed

Uphill positive, downhill negative, horizontal zero, vertical undefined

Slope:

Rise: _____ Run: ____

Y-intercept:

Test point #1

Chapter 6 Notes - Systems of Equations - Intermediate Algebra

Line 1: Color ___ Solid or dashed: X-intercept: ___ Y-intercept: ____ Slope: Rise: ______ Run: ___ Uphill positive, downhill negative, horizontal zero, vertical undefined Test point #1

Test point #2

 $x + 2y \ge 4$

Line 2: Color ____ Solid or dashed: X-intercept: Y-intercept: _____ Slope: ____ Rise: _____ Run: ___ Uphill positive, downhill negative, horizontal zero, vertical undefined

Test point #2

Test point #1

Line 1: Color _ Solid or dashed: X-intercept: ____ Y-intercept: _____ Slope: _____ Rise: _____ Run: ___ Uphill positive, downhill negative, horizontal zero, vertical undefined Test point #1 Test point #2

y < 3117. x+y>1

Line 2: Color ___

Solid or dashed:

X-intercept: _____ Y-intercept: ___

Slope: _____

Rise: _____ Run: ___

Uphill positive, downhill negative, horizontal zero, vertical undefined

Test point #1

Line 1: Color _____ Solid or dashed: X-intercept: ___ Y-intercept: ____ Slope: ____ Rise: _____ Run: __ Uphill positive, downhill negative, horizontal zero, vertical undefined Test point #1 Test point #2

2x + y > 1118, x - y < 2

Line 2: Color ____

Solid or dashed:

X-intercept: ___

Y-intercept: ____

Slope: ___ Rise: _____ Run: _

Uphill positive, downhill negative, horizontal zero, vertical undefined

Test point #1

Test point #2

Line 1: Color _____

Solid or dashed:

X-intercept:

Y-intercept: _____

Slope: ____

Rise: _____ Run: ___

Uphill positive, downhill negative, horizontal zero, vertical undefined

Test point #1

Test point #2

x + y < -1119 $x - y \ge 3$

Line 2: Color _____

Solid or dashed:

X-intercept: _____

Y-intercept:

Slope: ___

Rise: _____ Run: ___

Uphill positive, downhill negative, horizontal

zero, vertical undefined

Test point #1