

Name \qquad
Hour

Monday August 26	1.1 Understanding Points, Lines, \& Planes
Tuesday August 27	1.2 Linear Measure DHQ 1.1
Block Wed/Thurs. August 28-29	1.3 Distance and Midpoints - day 1 Practice Measuring Angles $\text { DHQ } 1.2$
Friday August 30	1.3 Distance and Midpoints - day 2 DHQ 1.3 - part 1
Monday September 2	Labor Day Holiday
Tuesday September 3	1.4 Angle Measure DHQ 1.3 - part 2
Block Wed/Thurs. September 4-5	1.5 Angle Relationships - Adjacent, Linear Pair, Vertical Quiz 1-1 to 1-3
Friday September 6	1.5 Angle Relationships - Supplementary, Complementary \quad DHQ 1-5
Monday September 9	Unit 1 Review
Tuesday September 10	Unit 1 Review
Block Wed/Thurs. Sept 10-11	Unit 1 Test
Friday September 12	Start Unit 2 - Chapter 9
	ere is no failure. Only feedback. ~ Anonymous

1.1 Understanding Points, Lines, \& Planes

Objective: 1) identify and model points, lines, and planes; 2) identify intersecting lines and planes.
undefined terms \rightarrow

KeyConcept Undefined Terms

A point is a location. It has neither shape nor size.

Named by a capital letter
A

Example point A
A line is made up of points and has no thickness or width. There is exactly one line through any two points.

Named by the letters representing two points on the line
 or a lowercase script letter

Example line m, line $P Q$ or $\overleftrightarrow{P Q}$, line $Q P$ or $\overleftrightarrow{Q P}$
A plane is a flat surface made up of points that extends infinitely in all directions. There is exactly one plane through any three points not on the same line.

Named by a capital script letter or by the letters naming three points that are not all on the same line

Example plane \mathcal{K}, plane $B C D$, plane $C D B$, plane $D C B$, plane $D B C$, plane $C B D$, plane $B D C$

Collinear points \rightarrow points that lie on the same line

Coplanar points \rightarrow points that lie in the same plane

Example 1-1-1: Name Lines and Planes

Use the figure to name each of the following.
a. a line containing point K

b. a plane containing point M
A. Name the geometric shape modeled by a 10×12 patio.
B. Name the geometric shape modeled by a button on a table.

Example 1-1-3: Draw Geometric Figures

Draw and label a figure for each relationship.
A. Plane R contains lines $\overleftrightarrow{A B}$ and $\overleftrightarrow{D E}$, which intersect at point P . Add a point C on plane R so that it is not collinear with $\overleftrightarrow{A B}$ or $\overleftrightarrow{D E}$.
B. $\overleftrightarrow{Q R}$ on a coordinate plane contains $Q(-2,4)$ and $R(4,-4)$. Add point T so that T is collinear with these points.

Intersection \rightarrow the set of points two or more geometric figures have in common.
If two lines intersect, then they intersect in a \qquad .

If two planes intersect, then they intersect in a \qquad .

Example 1-1-4-i: Interpret Diagrams

A. How many planes appear in this figure?
B. Name three collinear points.
C. Are points A, B, C and D coplanar? Explain.
D. At what point do $\overleftrightarrow{D B}$ and $\overleftrightarrow{C A}$ intersect?

Example 1-1-4-ii: Interpret Diagrams:

A. Name four coplanar points.
B. Name three lines.

Example 1-1-5: Sketch a figure that shows each of the following.
A. lines a and b intersecting at point P
B. $\overleftrightarrow{W D}$ lying in plane P
C. two lines intersecting in one point in a
D. points R, M, and D are collinear, but A is not plane, but only one of the lines lies in the plane

Thinking Questions

1. What are some other objects that point, lines and planes could be used to represent?
2. What are some other ways that combinations of points, lines, and planes are used?
3. Describe a point, a line and a plane. Can you clearly define these geometric terms?
4. What is the difference between a description and a definition?

1.2 Linear Measure

Objective: 1) to measure segments and 2) to be able to make calculations with those measurements

Segments and Rays	NEFINITION	NAME
Segment or (line segment): The part of a line consisting of 2 points and all points between them.		DIAGRAM
Endpoint: A point at one end of a segment or the starting point of a ray.		

Example 1-2-1 Lengths

Find the length of the segment using each ruler.
Important Tip-All measurements are approximations dependent upon the smallest unit of measure available on the measuring instrument.
A. Length of $\overline{A B}$
B. Length of $\overline{D E}$

In order for a point to be considered between two other points, all three points must lie on the same line and the sum of the two smaller segments must total the largest segment.

Postulate- A statement that describes a fundamental relationship between the basic terms of geometry.
Example of Segment Addition Postulate:

Example 1-2-3: Find Measurements by Adding

Find $X Z$. Assume that the figure is not drawn to scale.
($X Z$ means the measure of $\overline{X Z}$)

Find $L M$. Assume that the figure is not drawn to scale.

Example 1-2-5: Write and Solve Equations to Find Measurements

Find the value of x and $M N$ if N is between M and $P, M P=60, M N=6 x-7$, and $N P=2 x+3$. Draw a figure to represent this information. Then write and solve an equation relating the given measures.

KeyConcept Congruent Segments

Words
Congruent segments have the same measure.
Symbols

Example
\cong is read is congruent to. Red slashes on the figure also indicate congruence.
$\overline{A B} \cong \overline{C D}$

Equal Vs congruent

Lengths are \qquad and segments are \qquad .

It is correct to say $A B=C D$ and \qquad \cong \qquad . It is NOT correct to say \qquad $=$ \qquad or that $A B \cong C D$.

Example 1-2-5: Real World - Congruent Segments

The Arial font is often used because it is easy to read. Study the word time shown in Arial type. Each letter can be broken into individual segments. The letter T has two segments, a short horizontal segment, and a longer vertical segment. Assume that all segments overlap where they meet. Which segments are congruent?
T I M E

Thinking Questions

1. How many points are there between any two endpoints of a segment?
2. If point M is between points C and D, then $C D$ is (always, sometimes, or never) greater then $C M$ or $M D$? Explain Why.
3. If point B is between points Q and A, then what statement can be made?
4. Draw and label a picture that contains lines, planes, and simple geometric shapes.

1.3 Distance and Midpoints

Objective: 1) find the distance between two points and 2) the midpoint of a segment

Day I:

Example 1-3-1: Find Distance on a Number Line
a. Use the number line to find $Q R$.

b. Use the number line to find $A X$.

KeyConcept Distance Formula (in Coordinate Plane)

If P has coordinates $\left(x_{1}, y_{1}\right)$ and Q has coordinates $\left(x_{2}, y_{2}\right)$, then

$$
P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

Example 1-3-2: Find Distance on a Coordinate Plane
Find the distance between the two points algebraically
a. $C(-4,-6)$ and $D(5,-1)$
b. $E(-4,1)$ and $F(3,-1)$

Check
Graph the ordered pairs and apply the Pythagorean Theorem.
What is Pythagorean Thm? \qquad

Midpoint---

Midpoint Formula(s)

KeyConcept Midpoint Formula (on Number

If $\overline{A B}$ has endpoints at x_{1} and x_{2} on a number line,
then the midpoint M of $\overline{A B}$ has coordinate

$$
\frac{x_{1}+x_{2}}{2} .
$$

Segment Bisector- any segment, line, or plane that intersects a segment at its midpoint is called a segment bisector

Example $1-3-6$-i: Finding the lengths of a bisected segment.
Find the measure of $\overline{P Q}$ if Q is the midpoint of $\overrightarrow{P R}$.

Example 1-3-6-ii: Finding the lengths of a bisected segment.
Find the measure of $\overline{A C}$ if B is the midpoint of $\overline{A C}$

Example 1-3-3: Find the midpoint on a number-line
Marco places a couch so that its end is perpendicular and 2.5 feet away from the wall. The couch is $90^{\prime \prime}$ wide. How far is the midpoint of the couch back from the wall in feet?

Day 2:

$$
\begin{aligned}
& \text { KeyConcept Midpoint Formula (in Coordinate Plane) } \\
& \text { If } \overline{P Q} \text { has endpoints at } P\left(x_{1}, y_{1}\right) \text { and } Q\left(x_{2}, y_{2}\right) \text { in } \\
& \text { the coordinate plane, then the midpoint } M \text { of } \overline{P Q} \\
& \text { has coordinates } \\
& \qquad M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \text {. }
\end{aligned}
$$

Example $1-3-5$: Find the coordinates of the Midpoint
a. $G(8,-6), H(-14,12)$
b. $X(-2,3), Y(-8,-9)$

Example 1-3-5: Find the coordinates of the missing endpoint if B is the midpoint of $A C$
Algebraically
Graphically
a. $A(-8,6), B(-5,10)$
b. $B(-1,3), C(5,6)$

Thinking Questions

1. What is the relationship between the distance formula and the Pythagorean Theorem?
2. What is the correlation between a mean and the midpoint?
3. How is the midpoint formula different than the slope formula?
4. What is the difference between the two phrases "between two points" and "a point bisects the segment"?

1.4 Angle Measure

Objectives: 1) to measure and classify angles; identify and 2) use congruent angles and the bisector of an angle.

Definition	Diagram	Name
Ray A part of a line that starts at an endpoint and extends forever in one direction.		
Opposite rays 2 rays that have a common endpoint and form a line		

Angle \rightarrow formed by two non-collinear rays that have a common endpoint
Vertex \rightarrow common endpoint of an angle
Angle Names:
"angle" symbol $\rightarrow<$ or \measuredangle

Example 1-4-1-i: Angles and their Parts

Use the map of a high school shown.
a. Name all angles that have K as a vertex.
b. Name the sides of $\angle 6$.
c. What is another name for $\angle A J K$?

d. Name a point in the interior of $\angle E C G$.

Example 1-4-1-ii: Angles and their Parts

Use the image on the right.
a. Name the sides of $\angle 5$.
b. What is another name for $\angle 7$?

Angles are measured with degrees. 4 types of angles. Think about the type of angle when measuring, then you will know how to read the protractor.

Protractor Postulate: Given any angle, the measure can be put into one-to-one correspondence with real numbers between 0 and 180 .

KeyConcept Classify Angles			Straight angle
right angle	acute angle	obtuse angle	
$m \angle A=90$	$m \angle B<90$		

Example 1-4-2: Measure and Classify Angles

Classify each angle as right, acute, obtuse, or straight. Then use a protractor to measure the angle to the nearest degree. You may need to extend each ray.
a. $\angle T Y V$
b. $\angle W Y T$
c. $\angle T Y U$
d. $\angle S Y W$

Congruent Angles \rightarrow angles that have the same measure Arc Marks \rightarrow put them on angles to show congruence

$m \angle A B C=m \angle D E F$
(read: the \qquad of angle $A B C$ is equal to the \qquad of angle DEF)

$\angle A B C \cong \angle D E F$

(read: angle $A B C$ is \qquad to angle $D E F$)

Angles have the same \qquad if and only if the angles are \qquad .

A ray that divides an angle into two congruent angles is called an angle bisector.

Postulate 2.11 Angle Addition Postulate

D is in the interior of $\angle A B C$ if and only if
$m \angle A B D+m \angle D B C=m \angle A B C$.

Example 1-4-4: Angle Sums

In the figure, $\angle A B D \cong \angle F H G$. If $m \angle A B D=3 x+6$ and $m \angle F H G=x+26$, find the measures of $\angle A B D$ and $\angle F H G$.

Example 1-4-5: Angle Sums

If $m \angle D E F=48^{\circ}$ and $m \angle F E G=67^{\circ}$, find $m \angle D E G$.

Angle bisector \rightarrow a ray that divides an angle into two congruent angles

Example: $\overrightarrow{J K}$ bisects $\angle L J M$; therefore,

Example 1-4-6: Angle Bisectors

A. $\overrightarrow{K M}$ bisects $\angle J K L, m \angle J K M=(4 x+6)^{\circ}$ and $m \angle M K L=(7 x-12)^{\circ}$. Find $m \angle J K M$.
B. $\overrightarrow{Q S}$ bisects $\angle P Q R, m \angle P Q S=(5 y-1)^{\circ}$ and $m \angle P Q R=(8 y+12)^{\circ}$. Find $m \angle P Q S$.

1.5 Angle Relationships

Objective: 1) Identify and use special pairs of angles; 2) identify perpendicular lines
Day 1: Many pairs of angles have special relationships...either because of the measurements of the angles in the pair OR because of the positions of the angles in the pair.

KeyConcept Special Angle Pairs

Adjacent angles are two angles that lie in the same plane and have a common vertex and a common side, but no common interior points.

Examples $\angle 1$ and $\angle 2$ are adjacent angles. Nonexamples $\angle 3$ and $\angle A B C$ are nonadjacent angles

A linear pair is a pair of adjacent angles with noncommon sides that are opposite rays.

Example $\angle 1$ and $\angle 2 \quad$ Nonexample $\angle A D B$ and $\angle A D C$

Vertical angles are two nonadjacent angles formed by two intersecting lines.

Examples $\angle 1$ and $\angle 2 ; \angle 3$ and $\angle 4$

Nonexample $\angle A E B$ and $\angle D E C$

Can you draw an example when two angles would have a:
A. common vertex but not be adjacent?
B. common side but not adjacent?

Example 1-5-1-i: Identify Angle Pairs

A. Name an angle pair that satisfies the condition two angles that form a linear pair.
B. Name an angle pair that satisfies the condition two acute vertical angles.

Example 1-5-1-ii: Identify Angle Pairs

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.
A. $\angle 5$ and $\angle 6$
B. $\angle 7$ and $\angle S P U$
C. $\angle 7$ and $\angle 8$
D. $\angle 7$ and $\angle 5$

Example 1-5-2: Interpreting Diagrams

Determine whether each statement can be assumed from the figure. Explain.
a. $\angle V Y W$ and $\angle T Y S$ are adjacent angles.
b. $m \angle V Y T=90^{\circ}$

Day 2:

Complement of an angle $\rightarrow 90^{\circ}$ minus the angle is its complement

Example 1-5-3-i: Angle Measures

A. Find the complement of $\angle F$.
B. Find the supplement of $\angle F$.

Example 1-5-3-ii: Angle Measur

A. An angle is 10 degrees more than 3 times the measure of its complement. F the angle and its complement.
B. Find the measures of two supplementary angles if the difference in the measures of the two angles is 32 degrees.
C. Find the measures of two supplementary angles if the measure of one angle is 6 less than five times the measure of the other angle.

Example 1-5-4: Vertical Angles

A. Name the pairs of vertical angles.
B. Find the value of each variable.

KeyConcept Perpendicular Lines

- Perpendicular lines intersect to form four right angles.
- Perpendicular lines intersect to form congruent adjacent angles.
- Segments and rays can be perpendicular to lines or other line segments and rays.
- The right angle symbol in the figure indicates that the lines are
 perpendicular.

Symbol \perp is read is perpendicular to. Example $\overleftrightarrow{A D} \perp \overleftrightarrow{C B}$

Example 1-5-5: Perpendicular Lines

Find x and y so that $\overleftrightarrow{H M}$ and $\overleftrightarrow{K O}$ are perpendicular.

Example 1-5-6: Interpreting Diagrams

Determine whether each statement can be assumed from the figure. If so, explain. If not, why not?
a. $\angle T Y W$ and $\angle \mathrm{WYV}$ are complementary.
b. $\angle T Y W$ and $\angle T Y U$ are supplementary.

KeyConcept Interpreting Diagrams	
CAN be Assumed	CANNOT be Assumed

Thinking Questions

1. Supplementary angles are always, sometimes, or never linear pairs.
2. Are there angles that do not have a complement? Explain.
3. Describe at least three different ways you can determine that an angle is a right angle.
