Geometry Chapter 3 – Unit 4 Parallel Lines and Perpendicular Lines

Name: ____

Hour:	
-------	--

Unit 5 Chapter 3 Syllabus Geometry - Parallel and Perpendicular Lines*

Date	Lesson
Friday	3.1 Parallel Lines and Transversals
October 25	Assignment: 3.1 Practice WS
Monday	3.2 Angles and Parallel Lines
October 28	Assignment: 3.2 Practice WS
Tuesday	3.3 Slopes of lines
October 29	Assignment: 3.3 Practice WS
Block	3.4 Equations of lines – day 1
October 30/31	Different representations of the equation of a line: Standard form, slope-intercept form, point-slope form
	Quiz 3-1 and 3-2
Friday	3.4 Equations on lines – day 2
November 1	Equation of a line perpendicular or parallel to a given line
Monday	3.4 Equations on lines – day 3
November 4	Review all of 3.4
	Assignment: 3.4 Practice WS
Tuesday	3.5 Proving Lines Parallel – day 1
November 5	
Block Day	3.5 Proving Lines Parallel – day 2
November 6/7	Quiz 3-3 and 3-4
Friday	Partner Quiz 3-5
November 8	
Monday	Review for Chapter 3 Test
November 11	DUE ON DAY OF TEST
Tuesday	Review for Chapter 3 Test
November 12	
Block Day	Chapter 3 TEST
Nov 13/14	
Friday	
November 15	

* Schedule subject to change at teacher discretion.

3.1 Parallel Lines and Transversals

<u>Objective</u>: Identify the relationships between two lines or two planes; Name angle pairs formed by parallel lines and transversals

 $\overrightarrow{JK} \parallel \overrightarrow{LM}$ is read as line JK is parallel to line LM.

Example: 3-1-1 Identify Parallel and Skew Relationships

- A. Name all segments parallel to \overline{BC} .
- B. Name a segment skew to \overline{EH} .
- C. Name a plane parallel to plane ABG.

Transversal-

	KeyConcept Transversal Angle Pair Re	lationships	
Compare the	Four interior angles lie in the region between lines q and r .	∠3, ∠4, ∠5, ∠6	
	Four exterior angles lie in the two regions that are not between lines q and r .	∠1, ∠2, ∠7, ∠8	
	Same side interior angles are interior angles that lie on the same side of transversal <i>t</i> .	$\angle 4$ and $\angle 5$, $\angle 3$ and $\angle 6$	exterior
	Alternate interior angles are nonadjacent interior angles that lie on opposite sides of transversal <i>t</i> .	$\angle 3$ and $\angle 5$, $\angle 4$ and $\angle 6$	4 3 9 interior
How many	Alternate exterior angles are nonadjacent exterior angles that lie on opposite sides of transversal <i>t</i> .	$\angle 1$ and $\angle 7$, $\angle 2$ and $\angle 8$	5 6 7 7
	Corresponding angles lie on the same side of transversal t and on the same side of lines q and r .	$\angle 1$ and $\angle 5$, $\angle 2$ and $\angle 6$ $\angle 3$ and $\angle 7$, $\angle 4$ and $\angle 8$	exterior V

What is the difference...

Example 3-1-2 Classify Angle Pair Relationships

Classify the relationship between the given angle pair as alternate interior, alternate exterior, corresponding, or same side interior angles.

How do transversals...

Example 3-1-3 Identify Transversals and Classify Angle Pairs

Identify the transversal connecting each pair of angles in the diagram. Then classify the relationship between each pair of angles.

3.2 Angles and Parallel Lines

<u>Objective</u>: Use Theorems to determine the relationships between specific pairs of angles; Use algebra to find angle measurements.

If two parallel lines are cut by a transversal, then each pair of corresponding angles is congruent.

Examples $\angle 1 \cong \angle 3$, $\angle 2 \cong \angle 4$, $\angle 5 \cong \angle 7$, $\angle 6 \cong \angle 8$

Example 3-2-1 Use Corresponding Angles Postulate

In the figure, if the $m \angle 11 = 51^{\circ}$, find the measure of each angle. Tell which postulate(s) or theorem(s) you used.

Which angles...

Example 3-2-2 Use Theorems about Parallel Lines FLOOR TILES – The diagram represents the floor tiles in Michelle's house. If $m\angle 2 = 125$, find $m\angle 3$.

Example 3-2-3 Find Values of Variables

Use the figure to find the indicated variable. Explain your reasoning. A. If $m \angle 5 = 2x - 10$, and $m \angle 7 = x + 15$, find x.

What would be true about a transversal that is perpendicular to a pair of parallel lines?

B. If $m \angle 4 = 4(y - 25)$, and $m \angle 8 = 4y$, find y.

How could the Corresponding Angles Postulate be used to prove these theorems?

Example 3-2-5 Use the properties of parallel lines to find the value of x.

Example 3-2-7 Use the properties of parallel lines to find the value of *x* and *y*.

Why does systems of equations have to be used to solve example 3-2-7?

Theorem 3.4 – In a plane, if two lines are perpendicular to the same line, then they are parallel to each other.

Example 3-2-7 Use the properties of parallel & perpendicular lines to find the value of *x*.

An artist is building a mosaic. The mosaic consists of the repeating pattern shown at the right. What must be true of a and b to ensure that the sides of the mosaic are parallel?

3.3 Slopes of Lines

Objective: find the slope of a line; use slopes to identify parallel and perpendicular lines

• Slope / rate of change

Example 3-3-1 Determine the slope of each line or the slope of the line containing the given points.

- A. \overrightarrow{AB} E. (3, 6) (-2, 5)
- B. \overleftrightarrow{AC}
- C. \overrightarrow{AD} F. (-4, 2) (7,0)
- D. $\overleftarrow{C}\overrightarrow{D}$

Why does slope need to be interpreted in real world problems? **Example 3-3-2** Justin is driving from home to his college dormitory. At 4:00 p.m., he is 260 miles from home. At 7:00 p.m., he is 455 miles from home. Graph the line that represents Justin's distance from home at a given time. Find and interpret the slope of the line.

What does it mean if the denominator of a slope ratio is zero?

Use their slopes to determine whether they are parallel, perpendicular, or neither.

A. \overrightarrow{UV} and \overrightarrow{XY} U(0, 2), V(-1, -1), X(3, 1), and Y(-3, 3) 6 -10 -8 -6 -4 -2 4 6 8 10 2 2 -6 -8 10 10] 8 6 2 -10 -8 -6 -4 4 6 8 10 -2 2 2 4 -6

> -8 10

Example 3-3-4 Use slope to graph a line. Graph the line that contains Q(5, 1) and is parallel to MN with M(-2, 4) and N(2, 1).

Pairs of Lines		
PARALLEL LINES	INTERSECTING LINES	COINCIDING LINES
y = 5x + 8 $y = 5x - 4$	y = 2x - 5 $y = 4x + 3$	y = 2x - 4 $y = 2x - 4$
Same slope different y-intercept	Different <mark>slopes</mark>	Same slope, same y-intercept

Example 3-3-5 Classifying Pairs of Lines: Parallel, Intersect, Coincide?

A.
$$y = 3x + 7$$
,
 $y = -3x - 4$
B. $y = -\frac{1}{3}x + 5$,
 $6y = -2x + 12$
C. $2y - 4x = 16$,
 $y - 10 = 2(x - 1)$

Slope	Parallel Slope	Perpendicular Slope
7		
6		
$\frac{3}{4}$		
$\frac{10}{11}$		
-2		
$-\frac{1}{3}$		

3.4 Equations of Lines

Objective: Graph lines and write their equations in slope-intercept and point-slope form.

Point Slope Form	EXAMPLE
Write an equation in point-slope form of the line	Write an equation in point-slope form of the line
whose slope is $-\frac{3}{5}$ and contains (-10, 8). Graph.	whose slope is $\frac{1}{3}$ and contains (6, -3). Graph.

Two Points	EXAMPLE
Write an equation in slope-intercept form for a line	Write an equation in slope-intercept form for a
containing $(4, 9)$ and $(-2, 0)$.	line containing $(-3, -7)$ and $(-1, 3)$.
Slope of given line:	Slope of given line:
Plug in slope and point	Plug in slope and point
$y - y_1 = m(x - x_1)$	$y - y_1 = m(x - x_1)$

3.4 Equations of Lines Day 2

Standard Form from slope-intercept or point-slope form	EXAMPLE
Write an equation in standard form of the line whose slope is $-\frac{3}{5}$ and contains (-10, 8).	Write an equation of the line through $(7, -2)$ and $(5, 4)$ in standard form.

Horizontal lines have a slope of zero and are written y = b, where b is a constant. The line y = 3, is a horizontal line where every point on the line has a y coordinate of 3, (x,3).	HORIZONTAL LINE	y = b	VERTICAL LINE	x = a
	slope of zero and are written y = b, where b is a constant. The line y = 3, is a horizontal line where every point on the line has	7 	undefined slopes and are written x = a, where a is a constant. The line x = 4, is a vertical line where every point on the line has a x	
y = 3 $x = 4$		<i>y</i> = 3		<i>x</i> = 4

Horizontal Line	Vertical Line
Write an equation of the line through $(5, -2)$ and $(0, -2)$ in slope-intercept form.	Write an equation of the line through $(5, -2)$ and $(5, 3)$ in slope-intercept form.
Equation:	Equation:

Perpendicular Line	Parallel Line
Write an equation in slope-intercept form for a line	Write an equation in slope-intercept form for a
perpendicular to the line $y = \frac{1}{5}x + 2$ through	line parallel to $y = -\frac{1}{2}x - 3$ that contains
(2,0).	(4, 2).
Slope of given line:	Slope of given line:
Slope to use:	Slope to use:
Is it for a parallel or perpendicular line?	Is it for a parallel or perpendicular line?
Plug in slope and point	Plug in slope and point
$y - y_1 = m(x - x_1)$	$y - y_1 = m(x - x_1)$
Equation:	Equation:

What do you look at to check to see if two lines are perpendicular?

Do four points always yield two different lines? Explain why or why not.

3.5 Proving Lines Parallel - P. 207

Objective: Recognize angle pairs that occur with parallel lines; Prove that two lines are parallel.

Postulate 3.4 Converse of Corresponding Angles Postulate		
If two lines are cut by a transversal so that corresponding angles are congruent, then the lines are parallel.	a 6	
Examples If $\angle 1 \cong \angle 3$, $\angle 2 \cong \angle 4$, $\angle 5 \cong \angle 7$, $\angle 6 \cong \angle 8$, then $a \mid b$.	8 7 6 5	

Note: We will call Post 3.4 the "Corresponding Angles Converse"

 Postulate 3.5 Parallel Postulate

 If given a line and a point not on the line, then there exists exactly one line through the point that is parallel to the given line.

 If given a line and a point not on the line, then there exists exactly one line through the point that is parallel to the given line.

3.5 Alternate Exterior Angles Converse If two lines in a plane are cut by a transversal so that a pair of alternate exterior angles is congruent, then the two lines are parallel.	If $\angle 1 \cong \angle 3$, then $p \parallel q$.
3.6 Consecutive Interior Angles Converse If two lines in a plane are cut by a transversal so that a pair of consecutive interior angles is supplementary, then the lines are parallel.	$p \qquad q$ $4 \qquad 5$ If $m \angle 4 + m \angle 5 = 180$, then $p \parallel q$
3.7 Alternate Interior Angles Converse If two lines in a plane are cut by a transversal so that a pair of alternate interior angles is congruent, then the lines are parallel.	$P \xrightarrow{6} q$ 8 If $\angle 6 \cong \angle 8$, then $p \parallel q$.
3.8 Perpendicular Transversal Converse In a plane, if two lines are perpendicular to the same line, then they are parallel.	r p q

How is a converse of a theorem made?

Does it need to be proven?

Example 3-5-1 Identify Parallel lines

- A. Given $m \angle 1 = 103$ and $m \angle 4 = 100$, is it possible to prove that any of the lines shown are parallel? If so, state the postulate or theorem that justifies your answer.
- **B.** Given $\angle 1 \cong \angle 3$, is it possible to prove that any of the lines shown are parallel? If so, state the postulate or theorem that justifies your answer.

Write a question about this example that starts with the words: "How do..."

Example 3-5-2 Use Angle Relationships STANDARDIZED TEST PRACTICE: Find $m \angle ZYN$ so that $\overline{PQ} \mid\mid \overline{MN}$. Show your work.

Example 3-5-3 Proving lines parallel Given: $l \parallel m, \ \angle 1 \cong \angle 3$ Prove: $p \parallel r$

STATEMENTS	REASONS
1.	1.
2.	2.
3.	3.
4.	4.

For A and B to be parallel, what must be true about angles 1 and 2?

Example 3-5-3 Proving lines parallel

A carpenter is creating a wood work pattern and wants two long pieces to be parallel. $m \ge 1 = (8x + 20)$ and $m \ge 2 = (2x + 10)$. If x = 15, show that pieces A and B are parallel.

Example 3-5-5 Proving lines parallel Given: $m \perp p$; $m \perp q$. Prove: $p \mid\mid q$.

С

Example 3-5-5 Using characteristics of parallel lines

Find the value of x that makes $m \parallel n$.

Write a question about this example that starts with "Why does..."

3.6 Perpendiculars and Distance - p. 215

Objective: Find the distance between a point and a line; Find the distance between parallel lines.

Equidistant -

Words	The distance between a line and a point not on the line is the length of the segment perpendicular to the line from the point.	Model	A
Postu	late 3.6 Perpendicular Postulate		C
Words	If given a line and a point not on the line, then there exists exactly one line through the point that is perpendicular to the given line.	Model	P

Example 3-6-1 Distance from a Point to a Line

Kites Which segment represents the shortest distance from point A to \overline{DB} ?

How do you find the distance from a point to a line?

Example 3-6-3 COORDINATE GEOMETRY

Line *s* contains points at (0, 0) and (-5, 5). Find the distance between line *s* and point V(1, 5).

Example 3-6-5 Real World

A carpenter's square forms a right angle. A carpenter places the square so that one side is parallel to an edge of a board, and then draws a line along the other side of the square. Then he slides the square to the right and draws a second line. Why must the two lines be parallel?

Why does a carpenter have a "carpenter's square"?

Write a two column proof. Given: $r \parallel s, \angle 1 \cong \angle 2$ Prove: $r \perp t$

Statements

What formulas or theorems/postulates do you need to remember for the test? Write them here.